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Abstract

Rodriguez Chavez, Raul Steven; Díaz, Lorenzo (Advisor);
Gutierrez, Pablo (Co-Advisor). Statistical behavior of skew
products: Schwarzian derivative and arc-sine laws. Rio de
Janeiro, 2024. 89p. Dissertação de mestrado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

We consider skew products over Bernoulli shifts, whose fibred dynamics is
given by diffeomorphisms of the interval. We study the predictable and/or
historical behavior, referring to convergence and/or non-convergence, of the
Birkhoff average, respectively. We employ the Schwarzian derivative of the
fiber maps and the arc-sine law to identify conditions under which these
skew products exhibit these types of behavior. We identify distinct types
of behavior according to the Schwarzian derivative. When the Schwarzian
derivative is negative, the skew product has intermingled basins. Conversely,
when the Schwarzian derivative is positive, the skew product has a physical
measure. Finally, when the Schwarzian derivative is zero, the skew product
has historical behavior. In the latter scenario, we establish a connection
between historical behavior and the arc-sine law that allows us to obtain
results in other settings independent of the sign of the Schwarzian derivative.

Keywords
Intermingled basins; Physical measures; Historical behavior; Schwarzian

derivative; Arc-sine law.



Resumo

Rodriguez Chavez, Raul Steven; Díaz, Lorenzo; Gutierrez, Pablo.
Comportamento estatístico de produtos tortos: derivada
Schwarziana e leis do arco-seno. Rio de Janeiro, 2024. 89p.
Dissertação de Mestrado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

Consideramos produtos tortos sobre “shifts” de Bernoulli, cuja
dinâmica fibrada é dada por difeomorfismos do intervalo. Estudamos o
comportamento previsível e/ou histórico destes sistemas, referindo-nos à
convergência e/ou não convergência, da média de Birkhoff, respectivamente.
Utilizamos a derivada Schwarziana das fibras e a lei do arco-seno para
identificar condições nas quais esses produtos tortos apresentam esses
tipos de comportamento. Identificamos distintos tipos de comportamento
em relação à derivada Schwarziana. Quando a derivada Schwarziana é
negativa, o produto torto tem bacias entrelaçadas. Por outro lado, quando
a derivada Schwarziana é positiva, o produto torto possui uma medida
física. Finalmente, quando a derivada Schwarziana é nula, o produto
torto tem comportamento histórico. No último cenário, estabelecemos uma
conexão entre o comportamento histórico e a lei do arco-seno que nos
permite obter resultados em outras configurações independentes do sinal
da derivada Schwarziana.

Palavras-chave
Bacias entrelaçadas; Medidas físicas; Comportamento histórico; Derivada

Schwarziana; Lei do arco-seno.;



Table of contents

1 Introduction 10

2 Preliminaries and notations 20
2.1 Skew products systems 20
2.2 Lyapunov exponents 21
2.3 Schwarzian Derivative 24

3 Negative Schwarzian derivative: intermingled basins 25
3.1 Negative Schwarzian derivative 25
3.2 Intermingled basins 27

4 Positive Schwarzian derivative: physical measures 32

5 Skew products with historical behavior 39
5.1 Constant Lyapunov functions 39
5.2 Historical behavior 42
5.2.1 Historical behavior under an ergodic assumption 47

6 Arc-sine Laws 51
6.1 Fiber and skew product arc-sine Laws 51
6.2 Arc-sine Laws and historical behavior: a characterization 54

7 Zero Schwarzian derivative: historical behavior 57
7.1 Zero Schwarzian derivative 57
7.2 Proof of Theorem 7.1 59
7.2.1 Zero Schwarzian derivative and ergodic assumption 65

8 Historical behavior in other settings 67
8.1 Skew products 67
8.2 Arc-sin Law in interval functions 72
8.3 Historical behavior in generalized Manneville-Pomeu functions 76

A Probability and ergodic theory 79

B Schwarzian derivative 84

Bibliography 87



List of figures

Figure 1.1 Bowen eye. 10
Figure 1.2 Kan’s elevators. 14
Figure 1.3 Manneville-Pomeu 18

Figure 3.1 Dinamic in (i) and (ii). 28
Figure 3.2 Choice of k-preiterate. 29
Figure 3.3 Projection of S. 30
Figure 3.4 Example of intermingled basins 31

Figure 4.1 Fiber distance 34

Figure 8.1 Fiber maps 68
Figure 8.2 Fiber core maps. 68
Figure 8.3 Skew product Hata-Yano. 71
Figure 8.4 Core maps Hata-Yano. 71
Figure 8.5 Manneville-Pomeu functions. 76
Figure 8.6 Thaler functions. 77
Figure 8.7 (a) Zero derivative; (b) Infinite derivative 78



1
Introduction

For a continuous function f : M → M on a compact metric space, given
a point x ∈ M , one can analyze the behavior of the forward orbit of the point x
defined by

O+(x) def=
{
x, f(x), f 2(x), . . . , fn(x), . . .

}
.

When the function is invertible, we can consider the backward orbits defined
similarly. In what follows, we focus on the case where invertibility is not
necessary. The orbit has a predictable behavior if, for every continuous function
φ : M → R, the time average

1
n

n−1∑
j=0

φ(f j(x)) (1-1)

converges. On the other hand, an orbit has historical behavior if, there is a
continuous function φ : M → R, the time average does not converge. This
terminology was introduced by Ruelle [19] and develop by Takens [23]. We are
interested in studying the abundance of predictable and historical behaviors.
We begin by considering the historical case. Historical behavior is abundant if
there exists a set B of positive measure with respect to some reference measure,
such that for each point in B, its orbit exhibits historical behavior.

A paradigmatic dynamical configuration that leads to historical behavior
is the so-called Bowen Eye in [22], see Figure 1.1. This configuration, is a
2-dimensional vector field with two saddle singularities A and B, connected by
a heteroclinic cycle (i.e., a branch of the stable manifold of A coincides with a
branch of the unstable manifold of B, and vice versa).

Figure 1.1: Bowen eye.
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The union of these invariant manifolds and the singularities A and B (we
call this set Γ) bounds a disk ∆. Inside this disk, the vector field has a
repelling singularity C. In this way, backward orbits of point in int(∆) converge
to C while forward orbits accumulate on Γ. However, forward orbits of points
in int(∆) oscillate between the singularities A and B. It was noted by Bowen
that if x ∈ int(∆) \ {C} and if φ is a continuous function on ∆ with
φ(A) ̸= φ(B), then the time averages in (1-1) along the forward orbit of
x does not converge as n → ∞. A consequence of this oscillating behavior is
that for Lebesgue almost every (as follows a.e.) point, the system has historical
behavior. The construction of the Bowen eye and the results in [22] had very
important impact in the study of predictable behavior of dynamical systems.
Extensive research has been conducted to explore the existence of systems with
historical behavior from different perspectives. Here we analyze the predictable
and historical for skew products. We will now proceed to explain.

We study skew product maps F : Σ+ × I → Σ+ × I of the form

F (ξ, y) def= (σ(ξ), fξ(y)). (1-2)

Here, σ : Σ+ → Σ+ is the one-sided Bernoulli shift on (Σ+,P) = (AN, ρN),
where A is an alphabet with finite symbols. Moreover, the fiber maps fξ : I → I

are measurable functions on the interval I = [0, 1] endowed with the Lebesgue
measure λ. We also consider the reference measure in Σ+ × I given by the
product probability measure P × λ.

Given any point (ξ, y) ∈ Σ+ × I, its forward orbit under F has the form

F n(ξ, y) def= (σn(ξ), fn
ξ (y)),

where
fn

ξ (y) def= fσn−1(ξ) ◦ · · · ◦ fσ(ξ) ◦ fξ(y) for n ≥ 1.

Orbits may be studied from both topological and statistical point of views.
From a topological perspective, one defines the ω-limit of a point (ξ, y) by

ω(ξ, y) def=
{
(ξ̄, ȳ) ∈ Σ+ × I : ∃nj → +∞ with F nj (ξ, y) → (ξ̄, ȳ)

}
.

The points in ω(ξ, y) are called ω-limit points. From a statistical perspective,
one can associate with the iterates of point (ξ, y) its sequence of empirical
probability measures defined by

µn(ξ, y) def= 1
n

n−1∑
j=0

δF j(ξ,y), n ≥ 1,
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where δz is the Dirac probability measure supported on the point z. The orbit
of a point (ξ, y) may have two types of statistical behaviors concerning the
convergence of the sequence of measures µn(ξ, y) in the weak∗ topology:

– Predictable behavior : the sequence µn(ξ, y) converges, that is, there is a
probability measure µ on Σ+ × I such that lim

n→∞
µn(ξ, y) = µ.

– Historical behavior : the sequence µn(ξ, y) does not converge.

The convergence or non-convergence of the empirical measures can also be
analyzed in an equivalent way from the perspective of time average, as
presented before.

The basin of attraction of an F -invariant measure µ (i.e., µ ◦ F−1 = µ)
is defined by

B(µ) def=
{

(ξ, y) ∈ Σ+ × I : lim
n→∞

µn(ξ, y) = µ
}
.

Note that B(µ) is an F -invariant set. Moreover, the basins of attraction of two
different measures are disjoint. A particularly interesting case with predictable
behavior occurs when there is a limit measure whose basin of attraction has
positive reference measure. Such measures are called physical. Note that a
system may have several physical measures. In this case, given two physical
measures µ and ν, their basins B(µ) and B(ν) may be intermingled, meaning
that for every open set S ⊂ Σ+ × I, the following holds:

(P × λ)(B(µ) ∩ S) > 0 and (P × λ)(B(ν) ∩ S) > 0.

There are examples of skew products that have more than two physical
measures with intermingled basins (see [3, 16]). Also, there are systems having
several physical measures. In recent years, numerous works have explored the
existence of physical measures in different settings. Observe that when the
system has historical behavior almost everywhere, then there are no physical
measure. An example of this case is the Bowen eye mentioned before.

Concerning these behaviors, there are the following problems,
intentionally formulated imprecisely:

– Palis Conjecture [18]: Typical dynamical systems have finitely many
ergodic physical measures. Moreover, the union of their basins has full
Lebesgue measure.

– Last Takens Problem [23]: Are there persistent classes of dynamical
systems that have a set of points with positive Lebesgue measure, where
the orbits of these points exhibit historical behavior?
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In what follows, we focus on a type of skew products introduced by
Kan [13]. For such class, Kan [13] showed that some of them have two physical
measures that additionally have intermingled basins. The maps considered by
Kan satisfy the following condition

(H1) The fiber maps fξ : I → I, ξ ∈ Σ+ are order-preserving and
satisfy fξ(0) = 0 and fξ(1) = 1.

Under this condition, we have the invariant sets

A0
def= Σ+ × {0} and A1

def= Σ+ × {1},

as well as the measures µ0
def= P×δ0 and µ1

def= P×δ1, both of which are supported
on these sets. We are interested in analyzing the interaction between these two
measures.

To study this interaction, a first step is to determine the “attracting”
or “repelling” nature of the sets A0 and A1 using their transverse Lyapunov
exponents. The transverse Lyapunov exponent along the set Ai is defined by

L(i) def=
ˆ

log(f ′
ξ(i)) dP, i = 0, 1. (1-3)

When the Lyapunov exponent L(i) is negative, the basin B(µi) has positive
probability measure, i.e., µi is physical. When L(i) is positive, the basin B(µi)
has zero probability measure. The case L(i) = 0 is more tricky, and we will
also be considering in this dissertation.

When both probability measures are physical, one aims to determine
when their basins are intermingled. To address this type of question and to
induce some interaction between the basins, some additional properties are
required. In the family of examples introduced by Kan, two conditions are
imposed to force this interaction:

– Existence of elevators: there are two fixed points ξ−, ξ+ ∈ Σ+ such
that fξ−(y) < y and fξ+(y) > y (see Figure 1.2).

– Negative transverse Lyapunov exponents of µ0 and µ1.

The existence of elevators is a natural and simple hypothesis that forces
the interaction between µ0 and µ1. Let us note some parallelism with the
Bowen eye. The sets A0 and A1 act as the singularities A and B in Figure 1.1
and the fibers take the role of the heteroclinic connection, see Figure 1.2.

In the context above, Kan [13] introduced the first examples of skew
products on S1 × I, where the measures µ0 and µ1 on S1 × I are physical. He
also proved that their basins are intermingled.
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Figure 1.2: Kan’s elevators.

So far, the hypotheses on the fiber maps are relatively mild. By adding
additional structure to these maps, one can obtain more information about
the basins of the measures µ0 and µ1. To do this, Bonifant and Milnor [4]
consider the Schwarzian derivative (see Section (2.3)) of these fiber maps.
They proved that under the assumption of negative Schwarzian derivative of
fiber maps almost everywhere, when the measures µ0 and µ1 are physical,
there is a measurable function whose graph splits S1 × I into the basins B(µ0)
and B(µ1). They also prove under the existence of elevators that the basins
of µ0 and µ1 are intermingled. Note that in this case, the fiber maps fξ are
required to be C3-diffeomorphisms (otherwise, it is not possible to define the
Schwarzian derivative).

In [4], it is also noted the occurrence of two different type of behaviors
depending on the sign of the Schwarzian derivative. First, if the Schwarzian
derivative of the fiber maps is positive almost everywhere and the probability
measures µ0 and µ1 have basins of attraction with zero measure, there is a
physical measure on S1 × I whose basin has full measure. The second behavior
corresponds to the case of a zero Schwarzian derivative of fiber maps almost
everywhere and both transverse Lyapunov exponents L(i) = 0, i = 0, 1. In
this scenario, they replaced S1 with an infinite product space AN, where A
is any probability space. They claimed that, in this particular scenario, the
skew product F has historical behavior almost everywhere. The proof of this
claim involves the use of certain probability laws, which we will analyze later
as a tool to obtain historical behavior. Note that in the last two situations,
interactions between the basins of attraction of the probability measures µ0

and µ1 cannot exist.
This dissertation has two main goals. The first one is to analyze the

results of Bonifant and Milnor [4] for skew products. The second goal is to
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obtain conditions implying that skew products have historical behavior almost
everywhere, independently of the Schwarzian derivative. We focus on the class
of skew products called one-step (or locally constant). A skew product F as
in (1-2) is one-step if that the fiber maps fξ only depend on the zero-coordinate
of ξ = (ξ0, ξ1, ξ2, . . . ) ∈ Σ+, that is, fξ

def= fξ0 .
Concerning the first goal, we study different behaviors depending on the

sign of the Schwarzian derivative (denoted by Sfξ). The following results are
obtained:

– Negative derivative (Theorem 3.6): If Sfξ(y) < 0 for (P × λ)-a.e. point,
and both transverse Lyapunov exponents are negative, then the two
basins of attraction are intermingled, and the union of the basins has
full probability measure.

– Positive derivative (Theorem 4.2): If Sfξ(y) > 0 for (P × λ)-a.e. point,
and both transverse Lyapunov exponents are positive, then there is a
physical probability measure whose basin has full probability measure,
and therefore there is a unique physical probability measure.

– Zero derivative (Corollary 7.1.1): If Sfξ(y) = 0 for (P × λ)-a.e. point,
and both transverse Lyapunov exponents are zero, then F has historical
behavior for (P × λ)-a.e. point.

Concerning the second goal, we consider one-step skew products whose
fiber maps satisfy (H1) and the following topological (H2) and statistical (H0)
and (H3) conditions:

(H0) For every y ∈ I, the sequence {f j
ξ (y)}j≥0 of random variables has

a trivial tail σ-algebra (see Definition A.10). That is, for every A ∈
T ({f j

ω(y)}j≥0), it holds that P(A) ∈ {0, 1}.

(H2) For every y ∈ (0, 1), there exist α, β ∈ Σ+ and k, j ∈ N such that

fk
α(y) < y < f j

β(y).

(H3) There are y∗ ∈ (0, 1) and a non-negative, increasing, non-constant
function φ : I → R such that for every γ ∈ (m,M), where M = maxφ
and m = minφ,

lim sup
n→∞

1
n

n−1∑
j=0

1[γ,M ](φ(f j
ξ (y∗))) = 1,

lim sup
n→∞

1
n

n−1∑
j=0

1[m,γ](φ(f j
ξ (y∗))) = 1.

(1-4)
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for P-a.e. ξ ∈ Σ+. Here 1A denotes the indicator map of a
set A (i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise).

Note that condition (H0) can be obtained when the sequence of random
variables {f j

ξ (y)} is conjugated to a random walk in R (see Remark 5.2). On
the other hand, condition (H2) is a weak version of the elevators mentioned
above. Moreover, condition (H3) is satisfied if the skew product follows the
arc-sine law, which we discuss later. We obtain the following result.

Theorem 1.1 Let F be a one-step skew product as in (1-2) whose fiber maps
satisfy conditions (H0)–(H3) and φ the non-negative, increasing, non-constant
map in (H3). Then, for every y ∈ (0, 1), it holds

lim sup
n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y)) = maxφ and lim inf

n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y)) = minφ,

for P-a.e. ξ ∈ Σ+. In particular, F has historical behavior for (P×λ)-a.e. point.

Lévy [14] and Erdös and Kac [10] introduced the Arc-sine Law. Bonifant
and Milnor in [4] realized a connection between the Arc-sine Law and historical
behavior. They assert that when the Schwarzian derivative and both Lyapunov
exponents are zero, the Arc-sine law is satisfied, and the skew product has
historical behavior almost everywhere. However, the proof is incomplete. We
analyze this connection and introduce weak versions of the Arc-sine Law,
below. We establish a relation between these versions and the statistical
condition (H3) (see Proposition 6.6) showing that this property implies that F
has historical behavior almost everywhere. A different type of relation between
probability laws and historical behavior is established in Crovisier et al. [8],
using Brownian motion.

We introduce the following weak versions of the arc-sine law. Let
ψ : I → R be a non-negative, increasing, and non-constant continuous function.
Consider the function Ψ : Σ+ × I → R defined as Ψ(ξ, y) def= ψ(y) and define
m

def= minψ and M
def= maxψ. We introduce the following properties:

– The pair (F, Ψ) satisfies the skew product arc-sine law if, for every α ∈ (0, 1)
and every γ ∈ (m,M), it simultaneously holds

lim
n→∞

(P × λ)
(ξ, y) : 1

n

n−1∑
j=0

1[m,γ](Ψ(F j(ξ, y))) < α


 = 2

π
arcsin

√
α,

lim
n→∞

(P × λ)
(ξ, y) : 1

n

n−1∑
j=0

1[γ,M ](Ψ(F j(ξ, y))) < α


 = 2

π
arcsin

√
α.
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– The pair (F, ψ) satisfies the fiber weak arc-sine law if, there is y∗ ∈ J such
that, for every γ ∈ (m,M) and every α ∈ (0, 1) it simultaneously holds

lim sup
n→∞

P

ξ ∈ Σ+ : 1
n

n−1∑
j=0

1[γ,M ](ψ(f j
ξ (y∗))) < α


 < 1,

lim sup
n→∞

P

ξ ∈ Σ+ : 1
n

n−1∑
j=0

1[m,γ](ψ(f j
ξ (y∗))) < α


 < 1.

(1-5)

We prove that the skew product arc-sine law implies the fiber weak arc-sine
law (Proposition 6.5). We obtain the following result, which establishes that
any arc-sine law implies historical behavior.

Corollary 1.1.1 Let F be a one-step skew product as in (1-2) whose fiber
maps satisfy conditions (H0)–(H2). Let ψ : I → I be a non-negative, increasing,
non-constant function such that (F, ψ) satisfies the fiber weak arc-sine law.
Then, F has historical behavior for (P × λ)-a.e. point.

Finally, building on the ideas of the previous results, we analyze
measurable interval functions f : I → I fixing the points 0 and 1. Observe
that when the alphabet A is a singleton, skew products can be interpreted as
this measurable interval function. We establish the fiber weak arc-sine law in
this context, below.

Let f be a measurable function fixing the points 0 and 1 and ψ : I → I

a non-negative, monotone increasing continuous function. Let m
def= minψ

and M
def= maxψ. The pair (f, ψ) satisfies the weak arc-sine law if, for every

γ ∈ (m,M) and every α ∈ (0, 1), it simultaneously holds

lim sup
n→∞

λ

y ∈ I : 1
n

n−1∑
j=0

1[γ,M ](ψ(f j(y))) < α


 < 1,

lim sup
n→∞

λ

y ∈ I : 1
n

n−1∑
j=0

1[m,γ](ψ(f j(y))) < α


 < 1.

(1-6)

Recall that a σ-finite measure ν is ergodic if, for every f -invariant set A,
we have either ν(A) = 0 or ν(I \ A) = 0. We obtain the following result.

Theorem 1.2 Let f be a measurable function fixing the points 0 and 1
and admitting a σ-finite ergodic probability measure ν equivalent to λ. Let
ψ : I → R be a non-constant, increasing, non-negative continuous function
such that (f, ψ) satisfies the weak arc-sine law. Then, f has historical behavior
for λ-a.e. point.
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The Manneville-Pomeau functions, see Figure 1.3 are a first application
of the preceding result. As it established by Thaler in [24, 25, 26], these
functions admit a σ-finite ergodic probability measure ν equivalent to λ

and satisfy the weak arc-sine law. Consequently, we can apply Theorem 1.2
obtaining that these Manneville-Pomeau functions have historical behavior
almost everywhere (Corollary 8.11.1). In a related development, Coates and
Luzzatto [6] established the same historical behavior for interval functions f
that are similar to the Manneville-Pomeau functions, but may have zero or
infinite derivatives at the point of discontinuity.

Figure 1.3: Manneville-Pomeu

Organization of the dissertation. This dissertation has two main parts. In
the first part (Chapters 3–4), it is dedicated to the predictable behavior. In
the second part (Chapters 5–8), it is dedicated to the historical behavior. The
Schwarzian derivative plays an essential role in Chapters 3, 4, and 7. The
organization is as follows.

In Chapter 2, we review basic notions and introduce notations. In
Chapter 3, we analyze the behavior of the skew product when the fiber
maps have negative Schwarzian derivatives, specifically examining cases with
intermingled basins. In Chapter 4, we explore the existence of a physical
probability measure with a basin of attraction of full probability measure when
the fiber maps have a positive Schwarzian derivative. In Chapter 5, we study
some general properties of functions, specifically the upper and lower limits of
the Birkhoff average. We then state Theorem 5.12, stating conditions under
which a skew product has historical behavior. In Chapter 6, we introduce a
derived definition of the arc-sine law and compare the fiber and skew product
arc-sine laws. Additionally, we prove Corollaries 6.8.1 and 6.8.2, connecting
historical behavior with the arc-sine law. In Chapter 7, we analyze the behavior
of skew products when the fiber maps have a zero Schwarzian derivative.
In this case, we prove that the skew product satisfies the arc-sine law and,
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therefore, has historical behavior. Finally, in Chapter 8, we provide an example
of skew products that satisfy the fiber weak arc-sine law independently of the
Schwarzian derivative. Moreover, we introduce the arc-sine laws for interval
measurable functions. Additionally, we state Theorem 8.7, addressing historical
behavior for measurable functions on intervals with two indifferent fixed points.
We also introduce the generalized Manneville-Pomeu functions and prove that
they exhibit historical behavior.



2
Preliminaries and notations

We now establish some basic definitions and notations

2.1
Skew products systems

Let (Σ+,P) = (AN, ρN) be a probability product space, where A is a finite
alphabet. Elements in the set Σ+ are denoted by

ξ = (ξ0, ξ1, ξ2, . . . ) = (ξj)j≥0,

where ξj ∈ A for every j ∈ N. Let σ : Σ+ → Σ+ be the left shift, defined by
σ(ξ) = ξ′, where ξ′

j = ξj+1 for all j ≥ 0. The shift map is a measure-preserving
and ergodic function with respect to P. The space Σ+ has a product topology
generated by cylinders such as Cξ for Σ+, defined as follows

Cξ =
{
ξ′ ∈ Σ+ : ξ′

i = ξi, for all i = 0, . . . , n− 1
}
.

Let I = [0, 1] endowed with the Lebesgue measure λ. Consider a finite
family F = {fi : i ∈ A} of measurable function fi : I → I fixing the points
0 and 1. Now, for every ξ ∈ Σ+, we define fξ : I → I by fξ(y) def= fξ0(y).
Associated with F we consider the one-step (or locally constant) skew product
map F = FF given by

F : Σ+ × I → Σ+ × I, F (ξ, y) def= (σ(ξ), fξ(y)). (2-1)

Given a point (ξ, y) ∈ Σ+ × I its orbit under F is defined by

F j(ξ, y) def= (σj(ξ), f j
ξ (y)), j ≥ 0,

where
f j

ξ (y) def= fξj−1 ◦ . . . ◦ fξ0(y).

Definition 2.1 Given (ξ, y) ∈ Σ+ × I its w-limit is defined by

ω(ξ, y) =
{
(ξ̄, ȳ) ∈ Σ+ × I : ∃nj → +∞ such that F nj (ξ, y) → (ξ̄, ȳ)

}
.
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Definition 2.2 We say that a compact subset A ⊂ Σ+ × I is an attractor
of F if the set {(ξ, y) : ω(ξ, y) = A} has positive measure. Define the basin of
attraction of every subset A ⊂ Σ+ × I by the following set

B(A) def=
{
(ξ, y) ∈ Σ+ × I : ω(ξ, y) ⊂ A

}
.

Consider the boundary subsets of Σ+ × I given by

A0
def= Σ+ × {0} and A1

def= Σ+ × {1} (2-2)

and denote by B0 and B1 their basins, respectively.

2.2
Lyapunov exponents

Consider the skew product F defined as in (2-1), with fξ being
C1-diffeomorphisms. The transverse Lyapunov exponent of a point ξ ∈ Σ+

along the boundary Ai is defined by

Li(ξ) def= lim
n→∞

1
n

log
∣∣∣Dy f

n
ξ (i)

∣∣∣ , (2-3)

whenever this limit exists. By the chain rule, the equation (2-3) can be written
as follows:

Li(ξ) = lim
n→∞

1
n

log
(
f ′

ξ0(i)f ′
ξ1(i) . . . f ′

ξn−1(i)
)

= lim
n→∞

1
n

n−1∑
j=0

log(f ′
ξj

(i)).

Note that σ(ξ) is a measure-preserving and ergodic function with respect
to P. Then, by the Birkhoff ergodic Theorem A.17, for P-almost every ξ ∈ Σ+,
the transverse Lyapunov exponent can also be written as:

L(i) def=
ˆ

log(f ′
ξ(i)) dP. (2-4)

Lemma 2.3 Let F : Σ+ × I → Σ+ × I be a skew product as defined in (2-1).
We have that:

(i) If L(i) < 0, then the basin Bi has positive measure,

(ii) If L(i) > 0, then the basin Bi has zero measure.

Proof We first prove the statement for L(i) < 0 for i = 0, 1. We prove the
case i = 0, as the case i = 1 is analogous and hence omitted. Suppose that
L(0) < 0. Since fξ is a C1-diffeomorphism with fξ(0) = 0, we can consider the
Taylor expansion of fξ at the point 0, obtaining:

fξ(y) = f ′
ξ(0)y + o(y2).
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We choose K > 0 such that fξ(y) is uniformly bounded, i.e.,

fξ(y) ≤ y(f ′
ξ(0) +Ky), for every (ξ, y) ∈ Σ+ × I.

Given any η > 0 we have that

fξ(y) ≤ y(f ′
ξ(0) + η) for every y <

η

K
. (2-5)

Since L(0) < 0, we can choose η > 0 small enough so thatˆ
log(f ′

ξ(0) + η) dP < 0. (2-6)

We denote by a(ξ) = log(f ′
ξ(0) + η). Given (ξ, y) ∈ Σ+ × I write (ξj, yj) =

(σj(ξ), fξj
(y)). Consider the Birkhoff sums and averages

Bn(ξ) def=
n−1∑
j=0

a(ξj) and An(ξ) def= 1
n

n−1∑
j=0

a(ξj). (2-7)

By the Birkhoff ergodic theorem the averagesAn(ξ) are convergent for P-almost
every point. Since σ(ξ) is ergodic with respect to P, we have that

lim
n→∞

An(ξ) =
ˆ
a(ξ) dP < 0, for P-almost every ξ ∈ Σ+.

In particular, it follows that the sum Bn(ξ) converges to negative infinity
according to n → ∞. Therefore, the maximum

Bmax(ξ) = max
n≥0

Bn(ξ) (2-8)

is definite and finite for P-almost every ξ. Moreover, Bmax is measurable. Now,
suppose that

y ≤ η

K
e−Bmax(ξ0) (2-9)

by induction, we have that

yn ≤ η

K
eBn(ξ0)−Bmax(ξ0) ≤ η

K

for every n ∈ N. Since the sum Bn(ξ) converges to −∞, it follows that yn

converges to zero. Therefore, (ξ0, y) belongs to the basin of attraction B0.
Since the right-hand side of the inequality (2-9) is a measurable function

of ξ0, defined and strictly positive at P-almost every points, it follows that its
integral is strictly positive. The integral is a lower bound for the area of B0.
Thus, B0 has positive measure. Similarly, it can be shown that B1 has positive
measure.

Now we prove the statement for L(i) > 0 for i = 0, 1. We also
prove only the case i = 0, and the case i = 1 is omitted. We argue by
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contradiction. Suppose that B0 has positive reference measures. Consider the
Taylor expansion of fξ at the point 0, obtaining:

fξ(y) = f ′
ξ(0)y + o(y2).

Since fξ preserves order for every ξ ∈ Σ+, f ′
ξ(0) is strictly positive. We choose

K ≥ 0 such that fξ(y) is uniformly bounded, i.e.,

fξ(y) ≥ y(f ′
ξ(0) −Ky). (2-10)

Given η > 0, we have that

fξ(y) ≥ y(f ′
ξ(0) − η) for every y < η

K
.

Since L(0) > 0, we can choose 0 < η ≤ f ′
ξ(0) so that

ˆ
log(f ′

ξ(0) − η) dP > 0.

We denote a(ξ) def= log(f ′
ξ(0) − η). Then, for a set of points (ξ, y) of positive

measure, we could find orbits (ξj, yj) = (σj(ξ), fξj
(y)). Since σ is ergodic with

respect to P, we have that the Birkhoff average in (2-7)

lim
n→∞

An(ξ) =
ˆ
a(ξ)dP > 0, for P-a.e. ξ ∈ Σ+.

Therefore, the Birkhoff sums Bn(ξ) as in (2-7), converge to positive infinity
as n → ∞. We can define

Bmin(ξ) def= min
n≥0

Bn(ξ),

that is finite for P-a.e. point and is a measurable function. Suppose that

η

K
e−Bmin(ξ) ≤ yn.

By induction, we have that

η

K
eBn(ξ)−Bmin(ξ) ≤ yn, for every n ∈ N.

Taking the limit as n → ∞, we find that yn → ∞. This contradicts the fact
that yn < η

K
in (2-10). Therefore, B0 has measure zero, thus concluding the

proof of the lemma. ■
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2.3
Schwarzian Derivative

Our goal is to analyze the variation in behavior when the Schwarzian
derivative of the fiber map fξ has different signs. This relationship was
given by Bonifant and Milnor in [4]. The Schwarzian derivative of every
C3-diffeomorphism f is defined by

Sf(y) def= f ′′′(y)
f ′(y) − 3

2

(
f ′′(y)
f ′(y)

)2

.

The following lemma establishes the relations between the Schwarzian
derivative and the transverse Lyapunov exponents. From now on, whenever
we refer to the Schwarzian derivative, the function fξ is assumed to be
a C3-diffeomorphism.

Lemma 2.4 Let F : Σ+ × I → Σ+ × I be a skew product as defined in (2-1).
We have that:

(i) If Sfξ(y) < 0 for (P×λ)-almost every point (ξ, y), then L(0) + L(1) < 0.

(ii) If Sfξ(y) > 0 for (P×λ)-almost every point (ξ, y), then L(0) + L(1) > 0.

(iii) If Sfξ(y) = 0 for (P×λ)-almost every point (ξ, y), then L(0) + L(1) = 0.

Proof We prove only item (i), the other items are similar and the proof is
hence omitted. Since Sfξ(y) < 0 for (P × λ)-almost every point (ξ, y), by
Lemma B.6 we have that f ′

ξ(0)f ′
ξ(1) < 1. Therefore,

log(f ′
ξ(0)f ′

ξ(1)) = log(f ′
ξ(0)) + log(f ′

ξ(1)) < 0.

Integrating this inequality, we obtain
ˆ

ξ

log(f ′
ξ(0)) dP +

ˆ
ξ

log(f ′
ξ(1)) dP < 0.

Hence, we have L(0) + L(1) < 0, proving item (i). ■

Remark 2.5 Therefore, by Lemma 2.3, either L(1) < 0 or L(0) < 0 it follows
that the basin B0 or B1 has positive measure. If both exponents may be negative
simultaneously, both basins have positive measures.



3
Negative Schwarzian derivative: intermingled basins

In this chapter, we analyze the intermingled basins of skew
products (see (2-1)) of the form:

F : Σ+ × I → Σ+ × I, F (ξ, y) def= (σ(ξ), fξ(y)), (3-1)

where fξ : I → I are order-preserving C3-diffeomorphisms that satisfy

fξ(0) = 0 and fξ(1) = 1.

We analyze under which conditions the skew products have intermingled basins.
The intermingled property was introduced by Alexander et al. [1] as follows:

Definition 3.1 Let C and D be attractor sets in Σ+ × I with basins
of attraction B(C) and B(D), respectively. We say that these basins are
intermingled if, for every open set S ⊂ Σ+ × I, we have

(P × λ)(S ∩ B(C)) > 0 and (P × λ)(S ∩ B(D)) > 0.

where P × λ is the reference measure in Σ+ × I.

The chapter is organized as follows. First, in Section 3.1, we analyze
the general properties of skew products whose fiber maps have a negative
Schwarzian derivative. In Section 3.2, we investigate under which conditions
the skew products exhibit the property of intermingled basins.

3.1
Negative Schwarzian derivative

In this section, we study the skew product F as in (3-1) whose fiber maps
have a negative Schwarzian derivative. Let A0

def= Σ+ × {0} and A1
def= Σ+ × {1}

and B0 and B1 be the basins of attraction, respectively. The following theorem
claims that if the Schwarzian derivative of the fiber maps of the skew product F
is almost surely negative, then there is a measurable function whose graph
splits Σ+ × I into these basins.
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Theorem 3.2 Let F : Σ+ × I → Σ+ × I be a skew product as in (3-1), B0

and B1 be the basins of attraction, and L(0) and L(1) be the Lyapunov
exponents, respectively as in (2-4). Suppose that:

– Sfξ(y) < 0 for (P × λ)-a.e. (ξ, y) ∈ Σ+ × I, and
– L(0) < 0 and L(1) < 0.

Then, there is a measurable function γ : Σ+ → I such that for P-a.e. point, it
holds

(ξ, y) ∈ B0 if y < γ(ξ) and (ξ, y) ∈ B1 if y > γ(ξ).

In particular, the union B0 ∪ B1 has full (P × λ) measure.

As by Lemma 2.3, both basins have positive measure. Then, the previous
theorem justifies calling the sets A0 and A1 attractors.

Proof of Theorem 3.2. Consider the following numbers for each ξ ∈ Σ+:

γ0(ξ) = sup
{
y ∈ I : F j(ξ, y) → A0

}
,

γ1(ξ) = inf
{
y ∈ I : F j(ξ, y) → A1

}
.

Note that these graphs are invariant, γi(σ(ξ)) = fξ(γi(ξ)), i = 0, 1.
Since the functions fξ preserve the orientation, by definition, we have

that
0 < γ0(ξ) ≤ γ1(ξ) < 1.

In particular, if γ0(ξ) < y < γ1(ξ), then F j(ξ, y) does not converge to any of
the boundaries as j → ∞. Thus

(P × λ)(B0) =
ˆ
γ0(ξ) dP.

Since, by hypothesis, L(0) < 0 by Lemma 2.3 we have that B0 has positive
measure, it follows that

P(Ξ0) > 0, Ξ0
def= {ξ ∈ Σ+ : γ0(ξ) > 0}.

The invariance γ0(σ(ξ)) = fξ(γ0(ξ)) implies that the set Ξ0 is σ-invariant. As σ
is ergodic with respect to P, one gets that Ξ0 has a full measure.

Similarly, we define the set

Ξ1
def= {ξ ∈ Σ+ : γ1(ξ) < 1}

and prove that P(Ξ1) = 1.
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Lemma 3.3 γ0(ξ) = γ1(ξ) for P-a.e. ξ ∈ Σ+.

Proof Suppose, by contradiction, that there is a subset of Υ ⊂ Σ+ of positive
measure such that γ0(ξ) < γ1(ξ) for every ξ ∈ Υ. Define the function

r(ξ) def= ρ(0, γ0(ξ), γ1(ξ), 1),

where ρ denotes the cross ratio of four points, see Definition B.4. Since Sfξ < 0
for (P × λ)-a.e. (ξ, y) ∈ Σ+ × I, by Lemma B.5, the map fξ “increases the
cross-ratio” ρ and therefore for every ξ ∈ Υ it holds

r(ξ) = ρ(0, γ0(ξ), γ1(ξ), 1)

< ρ(fξ(0), fξ(γ0(ξ)), fξ(γ1(ξ)), fξ(1))

= ρ(0, γ0(σ(ξ)), γ1(σ(ξ)), 1) = r(σ(ξ)).

Integrating over Σ+, we obtain
ˆ 1
r(σ(ξ)) dP <

ˆ 1
r(ξ) dP.

This contradicts the fact that the measure P is σ-invariant. This contradiction
implies that γ0(ξ) = γ1(ξ) in P-a.e., proving the lemma. ■

We define P-a.e. the map γ(ξ) by the common value γ0(ξ) = γ1(ξ). By
construction, the measurable function γ : Σ+ → R has a graph splitting Σ+ ×I

into the two basins, as in the theorem. ■

Remark 3.4 Theorem 3.2 also holds in a more general case: Let (X,P) be a
standard probability space, and consider the skew product

F : X × I → X × I, F (ξ, y) def= (E(ξ), fξ(y)),

where E : X → X is a measure-preserving ergodic map with respect to P, and
fξ : I → I are order preserving C3 diffeomorphisms fixing the points 0 and 1.

3.2
Intermingled basins

Following Kan [13], we study under which conditions skew products have
intermingled basins. We consider the following skew product

Fk : S1 × I → S1 × I, Fk(ξ, y) def= (E(ξ), fξ(y)), k ≥ 2, (3-2)

where E(ξ) = kξ and fξ : I → I are order preserving C3-diffeomorphisms
fixing the points 0 and 1. Observe that, by Remark 3.4, this skew product
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Figure 3.1: Dinamic in (i) and (ii).

satisfies Theorem 3.2. We also have that when considering the alphabet
A = {0, . . . , k − 1}, the system (Σ+, σ) is ergodically equivalent to the
system (S1, E). That is, there is a homeomorphism

h : S1 → Σ+ such that σ ◦ h = h ◦ E.

Then, the ergodic properties of Fk are extended to the skew products F as
in (3-1). With a slight abuse of notation, we let

A0 = S1 × {0} and A1 = S1 × {1} (3-3)

and analyze the coexistence of the attractors A0 and A1 on the set S1 × I.
Remark 3.4 allows considering their basins by B0 and B1, respectively.

We assume the following conditions (see Figure 3.1). There are two fixed
points ξ−, ξ+ of E such that:

(i) fξ(y) < y for every 0 < y < 1 and every ξ in a neighborhood N− of ξ−,

(ii) fξ(y) > y for every 0 < y < 1 and every ξ in a neighborhood of N+ of ξ+.

Remark 3.5 With hypotheses (i) and (ii), the segment {ξ−} × [0, 1) is
contained B0 and the segment {ξ+} × (0, 1] is contained B1.

Theorem 3.6 Let Fk : S1 × I → S1 × I be a skew product as in (3-2),
and B0 and B1 be the basins of attraction as in (3-3). Suppose that Fk satisfies
conditions (i)–(ii), Sfξ(y) < 0 for (P×λ)-a.e. point, and both basins B0 and B1

have positive measure. Then the two basins of attraction are intermingled.
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Figure 3.2: Choice of k-preiterate.

Proof Define the measures in the cylinder S1 × I as

µi(S) def= (P × λ) (Bi ∩ S) for every measurable set S, i = 0, 1.

To prove that the basins are intermingled, it suffices to show that supp(µi)
covers the entire space S1 × I. We will prove the assertion for µ0; the proof for
µ1 is similar, and hence omitted.

Lemma 3.7 The set A1 is contained in supp(µo).

Proof Choose any point (ξ, y0) ∈ supp(µ0) with 0 < y0 < 1 and observe that
such points exists since B0 has positive measure. Now, we inductively define
the pre-orbit

F−j(ξ, y) def= (ξ−j, y−j), where j ≥ 0,

where each ξ−(j+1) is the pre-orbit of ξ−j closest to the fixed point ξ− (See
Figure 3.2). This implies that,

lim
j→∞

ξ−j = ξ−.

In particular, ξ−
j belongs to the neighborhood N− of ξ− for sufficiently large j.

Thus, by the hypothesis (i), we have that

y0 < y−1 < . . . < y−j < y−(j+1) < . . . < 1.

As a consequence,
lim

j→∞
F−j(ξ0, y0) = (ξ−, 1).

Since supp(µ0) is closed and F -invariant, it follows that (ξ−, 1) ∈ supp(µ0).
Moreover, as the pre-orbit of (ξ−, 1) is dense in A1, it follows that A1 is
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Figure 3.3: Projection of S.

contained in supp(µ0), proving the lemma. ■

By Remark 3.4, there exists a measurable function γ : S1 → R whose
graph splits S1 × I into the basins B0 and B1. Then, for every S ⊂ supp(µ0),
there exists a segment of the form {ξ} × [0, γ(ξ)) in B0 that intersects S with
(P×λ)-positive measure (see Figure 3.3). By Lemma 3.7, we have that γ(ξ) is
contained in A1 for every ξ. According to Remark 3.5 (see Figure 3.3), supp(µ0)
covers the entire cylinder. Consequently, for every open subset S of Σ+ × I,
we have

(P × λ)(S ∩ B1) > 0 and (P × λ)(S ∩ B2) > 0.

This concludes the proof of the theorem. ■

The following example was given by Kan [13], which presents a
C3-diffeomorphims in the cylinder with two intermingled basins.

Example 1 For every ε > 0, the skew product Fϵ : S1 × I → S1 × I defined by

Fk,ϵ(ξ, y) = (kξ, y + ayε cos (2πξ)(1 − y)) when k ≥ 3.

Consider the following conditions:

(a) If |a| < 1, then fξ has two fixed points fξ(0) = 0 and fξ(1) = 1;

(b) If a ̸= 0 we have that Sfξ(y) < 0 for (P × λ)-a.e. point (ξ, y) ∈ Σ+ × I;
and

(c) If we take ξ+ = 0, and choose ξ− a fixed point in (1
3 ,

2
3). For example,

ξ− =


1
2 if k is odd,
k

2k−2 if k ≥ 4 is even,
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Figure 3.4: Example of intermingled basins

then the application F satisfies hypothesis (i) and (ii).

It follows from conditions (a), (b), and (c) by Theorem 3.6 that F has its two
basins of attraction intermingled, as can be seen in Figure 3.4.



4
Positive Schwarzian derivative: physical measures

We continue to study skew products

F : Σ+ × I → Σ+ × I, F (ξ, y) = (σ(ξ), fξ(y)),

as in (3-1). Let ν be a measure on Σ+ × I, define the basins of attraction of
this measure by

B(ν) def=

(ξ, y) ∈ Σ+ × I : lim
n→∞

1
n

n−1∑
j=0

δF j(ξ,y)) = ν in the weak∗ topology

 .
We analyze under which conditions they skew products F have a physical
measure. This concept was introduced as follows:

Definition 4.1 An F -invariant measure ν is a physical measure in Σ+ × I if
the basin B(ν) has (P × λ)-positive measure.

The following theorem claims that if the Schwarzian derivatives of the
fiber maps of the skew product F are almost surely positive, then the skew
product has a physical measure. This theorem is the main result of this chapter.

Theorem 4.2 Let F : Σ+ ×I → Σ+ ×I be a skew product as in (2-1). Suppose
that Sfξ(y) > 0 for (P × λ)-a.e. (ξ, y) ∈ Σ+ × I and L(0) > 0 and L(1) > 0.
Then, F has a physical measure whose basin has full measure.

Observe that as both Lyapunov exponents are positive, by Lemma 2.4,
the basins B0 and B1 have zero measure. Consequently, the previous theorem
justifies calling the sets A0

def= Σ+ × {0} and A1
def= Σ+ × {1} as repelling.

Proof of Theorem 4.2. To prove this theorem, we find an appropriate
natural extension of F having a physical measure. We denote this extension
by F̃ . Thereafter, we extend the properties of this new skew product to the
initial skew product F .

Recalling that (Σ+,P) def= (AN, ρN) where A is a finite set. We begin by
considering the space of bi-sequences (Σ, P̃) def= (AZ, ρZ) such that there is a
projection

π : Σ → Σ+, π(ϖ) = ξ.
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Now, we define the skew product F̃ : Σ × I → Σ × I as follows:

F̃ (ϖ, y) def= (σ(ϖ), fϖ(y)), (4-1)

where fϖ : I → I is a C3-diffeomorphism with fϖ(0) = 0 and fϖ(1) = 1 such
that fϖ(y) = fξ(y), where π(ϖ) = ξ. Note that also there exists a projection

Π: Σ × I → Σ+ × I defined by Π(ϖ, y) def= (π(ϖ), y) = (ξ, y), (4-2)

such that
F ◦ Π = Π ◦ F̃ .

Remark 4.3 Since Sfξ(y) > 0 for (P × λ)-a.e. point, it follows that the
extension F̃ also satisfies Sfϖ(y) > 0 for (P̃ × λ)-a.e. point.

Proposition 4.4 Let F̃ : Σ×I → Σ×I be a skew product as in (4-1). Suppose
that Sfϖ(y) > 0 for (P̃ × λ)-a.e. (ϖ, y) ∈ Σ × I and L(0) > 0 and L(1) > 0.
Then, there is a measurable function γ : Σ → I such that:

– γ(σ(ϖ)) = fϖ(γ(ϖ)) for P̃-a.e. ϖ ∈ Σ,

– the graph of γ is P̃-a.e F̃ -invariant set, i.e., we have

F̃ (ϖ, γ(ϖ)) = (σ(ϖ), γ(σ(ϖ))) for P̃-a.e. ϖ ∈ Σ.

Proof As Sfϖ(y) > 0 for (P̃ × λ)-a.e. point, by Proposition B.1, we have
Sf−1

ϖ (y) < 0 for (P̃ × λ)-a.e. (ϖ, y) ∈ Σ × I. Moreover, since L(0) > 0 and
L(1) > 0 for F̃ , we have L(0) < 0 and L(1) < 0 for F̃−1. Now, according
to Observation 3.4 of Theorem 3.2, applied to the map F̃−1, there exists a
function γ : Σ → R such that γ(σ(ϖ)) = fϖ(γ(ϖ)) and

F̃ (ϖ, γ(ϖ)) = (σ(ϖ), fϖ(γ(ϖ)))

= (σ(ϖ), γ(σ(ϖ))),

for P̃-a.e. ϖ ∈ Σ. Therefore the graph of γ is P̃-a.e. F̃ -invariant set. ■

As by Proposition 4.4, γ(ϖ) ∈ (0, 1) is well-defined for P̃-a.e. ϖ ∈ Σ. We
define the following function:

r(γ(ϖ), y) def= |log ρ(0, γ(ϖ), y, 1)| ≥ 0, (4-3)
where ρ is the cross ratio (Definition B.4). Note that if γ(ϖ) = y, then
r(γ(ϖ), y) = 0. This function can be viewed as the distance between γ(ϖ)
and y in the fiber (see Figure 4.1).

Given a point (ϖ, y) ∈ Σ × I, its orbit under F̃ is defined by:
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Figure 4.1: Fiber distance

F̃ j(ϖ, y) def= (σj(ϖ), f j
ϖ(y)), j ≥ 0, (4-4)

where
f j

ϖ(y) def= fϖj−1 ◦ · · · ◦ fϖ0(y).

The following proposition claims that for (P̃ × λ)-a.e. point, the orbit in (4-4)
converges appropriately to the graph of γ.

Proposition 4.5 Let F̃ : Σ×I → Σ×I be a skew product as in (4-1). Suppose
that Sfϖ(y) > 0 for (P̃ × λ)-a.e. (ϖ, y) ∈ Σ × I and L(0) > 0 and L(1) > 0.
Then for P̃-a.e. (ϖ, y) ∈ Σ × I it holds

lim
n→∞

r(γ(σn(ϖ)), fn
ϖ(y)) = 0.

Proof As Sfϖ(y) > 0 for (P̃ × λ)-a.e. point, by Lemma B.5, we have that fξ

decreases the cross ratios for each ξ ∈ Σ+. Then, by (4-3), we have

r(fϖ(γ(ϖ)), fϖ(y)) < r(γ(ϖ), y) for P̃-a.e. (ϖ, y) ∈ Σ × I. (4-5)

By Proposition 4.4, we have fϖ(γ(ϖ)) = γ(σ(ϖ)), then in (4-5), we can write

r(γ(σ(ϖ)), fϖ(y)) < r(γ(ϖ), y) for P̃-a.e. (ϖ, y) ∈ Σ × I. (4-6)

Given r0 > 0, define the set

N(r0) def= {(ϖ, y) ∈ Σ × (0, 1) : r(γ(ϖ), y) < r0} .

By (4-6) we have F̃ (N(r0)) ⊂ N(r0). Now, given 0 < r0 < r1, consider the set

N(r1) \N(r0) = {(ϖ, y) ∈ Σ × (0, 1) : r0 < r(γ(ϖ), y) < r1}
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and let

s(ϖ) def= sup
{
r(γ(σ(ϖ)), fϖ(y))

r(γ(ϖ), y) : (ϖ, y) ∈ N(r1) \N(r0)
}

(4-7)

Lemma 4.6 Let 0 < r0 < r1 it holds F̃ n(N(r1)) ⊂ N(r0) for every n ≥ 1.

Proof Since Sfϖ(y) > 0 for (P × λ)-a.e. (ϖ, y) ∈ Σ × I, by (4-6), it follows
that s(ϖ) < 1 for P̃-a.e. ϖ ∈ Σ. Thus, log(s(ϖ)) < 0 for P̃-a.e. ϖ ∈ Σ. As σ
is ergodic with respect to P̃, and by Birkhoff’s Theorem A.17, it holds that

lim
n→∞

1
n

n−1∑
j=0

log(s(σj(ϖ))) =
ˆ

log(s(ϖ)) dP̃ < 0. (4-8)

Then,
lim

n→∞

1
n

log
n−1∏

j=0
s(σj(ϖ))

 < 0, for P̃-a.e. (ϖ, y) ∈ Σ. (4-9)

Claim 4.7 For every 0 < r0 < r1, there is n0 ∈ N such that for every n ≥ n0,
it holds

n−1∏
j=0

s(σj(ϖ)) < r0

r1
.

Proof Note that by (4-8), ∏n−1
j=0 s(σj(ϖ)) is convergent. Now, suppose, by

contradiction, there is n0 such that for every n ≥ n0 we have that
n−1∏
j=0

s(σj(ϖ)) → a, a > 0. (4-10)

This implies that

lim
n→∞

1
n

log
n−1∏

j=0
s(σj(ϖ))

 = 0,

this contradicts (4-9). Therefore, there is n0 such that for every n ≥ n0 it holds

n−1∏
j=0

s(σj(ϖ)) → 0,

in particular, there is n0 such that for every n ≥ n0 it holds
n−1∏
j=0

s(σj(ϖ)) < r0

r1
, (4-11)

ending the proof of claim. ■

By definition, we have that r(γ(σn(ϖ)), fn
ϖ(y)) > 0 for every n ≥ 0.

Thus, using (4-7), for every (ϖ, y) ∈ N(r1) \N(r0), we obtain

sup
{
r(γ(σ(ϖ)), fϖ(y))

r(γ(ϖ), y) × · · · × r(γ(σn(ϖ)), fn
ϖ(y))

r(γ(σn−1(ϖ), fn−1
ϖ (y))

}
≤

n−1∏
j=0

s(σj(ϖ))
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Now, by the telescopic property, we have

r(γ(σ(ϖ)), fϖ(y))
r(γ(ϖ), y) × · · · × r(γ(σn(ϖ)), fn

ϖ(y))
r(γ(σn−1(ϖ), fn−1

ϖ (y)) = r(γ(σn(ϖ)), fn
ϖ(y))

r(γ(ϖ), y) .

(4-12)
Thus, by Claim 4-11 and (4-12), we obtain

sup
{
r(γ(σn(ϖ)), fn

ϖ(y))
r(γ(ϖ), y) : (ϖ, y) ∈ N(r1) \N(r0)

}
<
r0

r1
.

This shows that iterating F̃ n(N(r1)) ⊂ N(r0) for n ≥ 1, concluding the proof
of the lemma. ■

As 0 < r0 < r1 can be arbitrary, by Lemma 4.6 we have that

lim
n→∞

r(γ(σn(ϖ)), fn
ϖ(y)) = 0,

ending the proof of proposition. ■

Now, given the graph function γ̃ : Σ → Σ × I defined by

γ̃(ϖ) def= (ϖ, γ(ϖ)),

consider the measure ν̃ on Σ× I to be the push-forward of P̃ under the map γ̃.
That is, for every measurable set A ⊂ Σ × I, it holds

ν̃(A) def= (γ̃∗P̃)(A) = P̃(F̃−1(A)).

Lemma 4.8 The measure ν̃ is a physical measure for skew product F̃ .

Proof We first prove that the measure ν̃ is F̃ -invariant. Recall that, by
Proposition 4.4, γ̃ is F̃ -invariant. Then for every measurable set A ⊂ Σ × I we
have

ν̃(F̃−1(A)) = (γ̃∗ P̃)(F̃−1(A)) = P̃(γ̃−1(F̃−1(A)))

= P̃(γ̃−1(A)) = (γ̃∗ P)(A) = ν̃(A),

concluding that the measure is F̃ -invariant.
Now, by Proposition 4.5, all orbits of the skew product F̃ converge to

the graph of γ. That is, given ε > 0, we have

lim
n→∞

∣∣∣F̃ n(ϖ, y) − (σn(ϖ), γ(σn(ϖ)))
∣∣∣ = lim

n→∞
r(γ(σn(ϖ)), fn

ξ (y)) < ε,

for P̃×λ-a.e (ϖ, y) ∈ Σ×I. Given any continuous test function φ̃ : Σ×I → R,
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we have∣∣∣∣∣ lim
n→∞

1
n

n−1∑
j=0

φ̃
(
F̃ j(ϖ, y)

)
− lim

n→∞

1
n

n−1∑
j=0

φ̃(γ̃(σj(ϖ)))
∣∣∣∣∣

=

∣∣∣∣∣∣ lim
n→∞

1
n

n−1∑
j=0

(
φ̃
(
F̃ j(ϖ, y)

)
− φ̃

(
σj(ϖ), γ(σj(ϖ))

))∣∣∣∣∣∣
≤ lim

n→∞

1
n

n−1∑
j=0

∣∣∣φ̃ (F̃ j(ϖ, y)
)

− φ̃
(
σj(ϖ), γ(σj(ϖ))

)∣∣∣
< ε,

(4-13)

for P̃×λ-a.e (ϖ, y) ∈ Σ×I. Since φ̃◦ γ̃ : Σ → R is a continuous function, and σ
is ergodic with respect to P̃, by the Birkhoff Ergodic Theorem (Theorem A.17),
it follows that

lim
n→∞

1
n

n−1∑
j=0

φ̃(γ̃(σj(ϖ))) =
ˆ
φ̃ ◦ γ̃(ϖ) d P̃ =

ˆ
φ̃(ϖ, y) dν̃. (4-14)

Hence, by (4-13) and (4-14), we conclude that

lim
n→∞

1
n

n−1∑
j=0

φ
(
F̃ j(ϖ, y)

)
=
ˆ
φ̃(ϖ, y) dν̃ for P̃ × λ-a.e (ϖ, y) ∈ Σ × I.

This completes the proof of the lemma. ■

Now, we extend the existence of this physical measure to the skew
product F in Lemma 4.8. Consider the projection π : Σ × I → Σ+ × I in (4-2),
and define the measure ν def= π∗ν̃ on Σ+ × I.

Lemma 4.9 The measure ν is a physical measure for the skew product F .

Proof We first prove that the measure ν is F -invariant. Recall that, by
Lemma 4.8, the measure ν̃ is F̃ -invariant. Then, for every measurable
subset A ⊂ ξ × I, we have

ν(F−1(A)) = (Π∗ ν̃)(F−1(A)) = ν̃(Π−1(F−1(A))) = P̃(γ̃−1(F̃−1(Π−1(A)))

= P(γ̃−1(Π−1(A))) = ν̃(Π−1(A)) = (π∗ ν̃)(A) = ν(A),

proving that ν is F -invariant.
Now, consider a continuous function φ : Σ+ × I → R. Then, we have

lim
n→∞

1
n

n−1∑
j=0

φ
(
F j(ξ, y)

)
= lim

n→∞

1
n

n−1∑
j=0

φ
(
F j(π(ϖ, y))

)
.
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By projection defined in (4-2), we have F n ◦ π = π ◦ F̃ n for every n ≥ 0. In
the previous equality, we can write

lim
n→∞

1
n

n−1∑
j=0

φ
(
F j(ξ, y)

)
= lim

n→∞

1
n

n−1∑
j=0

φ
(
π(F̃ j(ϖ, y))

)
. (4-15)

As φ ◦ π : Σ × I → R is also a continuous function, and by Lemma 4.8, ν̃ is a
physical measure, we have

lim
n→∞

1
n

n−1∑
j=0

φ
(
π(F j(ϖ, y))

)
=
ˆ
φ ◦ π(ϖ, y) dν̃,

for (P̃ × λ)-a.e. (ϖ, y) ∈ Σ × I. Thus, by the definition of ν, we have
ˆ
φ ◦ π(ϖ, y) dν̃ =

ˆ
φ(ξ, y) d(π∗ν̃) =

ˆ
φ(ξ, y) dν. (4-16)

Therefore, by (4-15) and (4-16), we have

lim
n→∞

1
n

n−1∑
j=0

φ
(
F j(ξ, y)

)
=
ˆ
φ(ξ, y) dν,

for (P × λ)-a.e. (ξ, y) ∈ Σ+ × I, concluding the proof of the lemma. ■

The measure ν is the required physical measure for F , concluding the
proof of the theorem. ■



5
Skew products with historical behavior

In this chapter, we analyze the non-statistical behavior of one-step skew
products of the form,

F : Σ+ × I → Σ+ × I, F (ξ, y) def= (σ(ξ), fξ(y)), (5-1)

where fξ : I → I are measurable functions defined as fξ(y) def= fξ0(y) on the
interval I endowed with the Lebesgue measure λ. As in Chapter 2, σ : Σ+ → Σ+

is the lateral shift on the Bernoulli probability space (Σ+,P) = (AN, ρN), where
A is at most countable alphabet. We analyze under which conditions a one-step
skew product has historical behavior almost everywhere.

Definition 5.1 Let F : Σ+ × I → Σ+ × I be a skew product as in (5-1). We
say that F has historical behavior almost everywhere if, for (P×λ)-a.e. (ξ, y),
there is a continuous function Φ : Σ+ × I → R such that the limit

lim
n→∞

1
n

n−1∑
j=0

Φ
(
F j(ξ, y)

)

does not exist.

The chapter is organized as follows. First, in Section 5.1, we define
the functions upper and lower limit of the Birkhoff average, stating their
main properties in our setting. In Section 5.2, we prove the main result of
this chapter (Theorem 5.12) dealing with the historical behavior of the skew
product F .

5.1
Constant Lyapunov functions

In this section, we analyze general properties of the skew product defined
as in (5-1). Given a continuous function φ : I → R, we define the functions:

Uφ(ξ, y) def= lim sup
n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y)),

Lφ(ξ, y) def= lim inf
n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y)).

(5-2)
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We analyze the behavior of these functions when the skew product F satisfies
the following condition:

(H0) For every y ∈ I, the sequence {f j
ξ (y)}j≥0 of random variables has

a trivial tail σ-algebra (see Definition A.10). That is, for every A ∈
T ({f j

ξ (y)}j≥0), it holds that P(A) ∈ {0, 1}.

Remark 5.2 Condition (H0) is obtained when the sequence {f j
ξ (y)}j≥0 is

conjugated to a random walk in R. That is, if there exist homeomorphisms
h : (0, 1) → R and f̂ξ : R → R such that f̂ξ ◦ h = h ◦ fξ satisfying that
the random variables X0 = t and Xi = f̂ i

ξ(t) − f̂ i−1
ξ (t) are independent and

identically distributed (hereafter, i.i.d.), i ≥ 1.

Proposition 5.3 Let F be a one-step skew product as in (5-1) satisfying (H0).
Then there are functions ℓ, h : I → I such that for every y ∈ I it holds that

Uφ(ξ, y) = ℓ(y) and Lφ(ξ, y) = h(y) for P-a.e. ξ ∈ Σ+.

Proof Given a constant b ∈ R, define the set

A(b, y) def= {ξ ∈ Σ+ : Uφ(ξ, y) < b}. (5-3)

For every y ∈ I, we have that the tail σ-algebra T ({f j
ξ (y)}j≥0) is trivial. By

Lemma A.11, A(b, y) belongs to the tail algebra T ({f j
ξ (y)}j≥0). Hence, the

probability of A(b, y) is either zero or one.
Now, let

b̄(y) = inf{b : P(A(b, y)) = 1}.

Claim 5.4 Uφ(ξ, y) = b̄(y) for P-a.e. ξ ∈ Σ+.

Proof For simplicity, we write b̄ = b̄(y), A(b) = A(b, y) and observe that
P(A(b̄)) ∈ {0, 1}. If P(A(b̄)) = 0, then Uφ(ξ, y) ≥ b̄ for P-a.e. ξ ∈ Σ+.
Moreover, by the definition of b̄, we have that Uφ(ξ, y) < b̄ + 1

n
for every

n ≥ 1 and P-a.e. ξ ∈ Σ+. Hence, by taking n → ∞, we find that Uφ(ξ, y) = b̄

for P-a.e. ξ ∈ Σ+ proving the claim in this case.
To conclude the proof, we need to analyze also the case when P(A(b̄)) = 1.

Suppose, by contradiction, that there exists a set B ⊂ A(b̄) with P(B) > 0
such that Uφ(ξ, y) ̸= b̄ for every ξ ∈ B. By the definition of b, we have that
P(A(b̄− 1

n
)) = 0. Consider the sets

Bn
def=
⋃

n≥0

(
A
(
b̄− 1

n

)
∩B

)
,
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and note that P(Bn) = 0 and therefore limn→∞ P(Bn) = 0. However, the
sequence B1 ⊂ B2 ⊂ . . . is a monotonically increasing sequence such that

lim
n→∞

P(Bn) = P(A(b̄) ∩B) = P(B) > 0,

which leads to a contradiction. Therefore, Uφ(ξ, y) = b̄ for P-a.e. ξ ∈ Σ+,
proving the claim. ■

Claim 5.4 implies that we can define the map ℓ : I → I, ℓ(y) = b̄(y). By
construction, it holds, Uφ(ξ, y) = ℓ(y) for P-a.e. ξ ∈ Σ+.

Considering the set

C(b, y) def= {ξ ∈ Σ+ : Lφ(ξ, y) > b}

and arguing similarly to the previous claims, we can prove that Lφ(ξ, y) = h(y)
for P-a.e. ξ ∈ Σ+, ending the proof of proposition. ■

Proposition 5.5 Let F be a one-step skew product as in (5-1) satisfying (H0).
Consider the interval function ℓ and h defined in Proposition 5.3. Then,
for every y ∈ I it holds that

ℓ(y) = ℓ(fk
ξ (y)) and h(y) = h(fk

ξ (y)) for P-a.e. ξ and for all k ≥ 0.

Proof We only prove the proposition for the function ℓ, the proof for h is
similar and hence omitted. By Proposition 5.3, for every y ∈ I there exists a
set Ωy with P(Ωy) = 1, such that Uφ(ξ, y) = ℓ(y) for every ξ ∈ Ωy. Consider
the set An of all words of size n. Now, define the set

An
def=

⋂
ξ∈Σ+

σ−n
(
Ωfn

ξ
(y)
)

=
⋂

ξ0,...,ξn−1∈An

σ−n
(

Ωf
ξ

n−1
◦···◦f

ξ0
(y)

)
. (5-4)

Note that the set An is countable. (as A is an alphabet at the most countable.).
Since P(Ωfn

ξ
(y)) = 1 for all n ≥ 0, and P is σ-invariant, then

P(σ−n(Ωfn
ξ

(y))) = 1 for all n ≥ 0.

Now, as the intersection in (5-4) is a countable, by σ-additivity, we
have P(An) = 1 for every n ≥ 0. Define the set

Λ def=
⋂

n≥0
An.

As Λ is a countable intersection of sets with probability one, it follows
that P(Λ) = 1. This implies that for every word ω of size k such that the
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cylinder Cω of ω satisfies Λ ∩ Cξ ̸= ∅. Now, choosing any ξ ∈ Λ ∩ Cω, it holds

ℓ(fk
ξ (y)) = Uφ(σk(ξ), fk

ξ (y))

= lim sup
n→∞

1
n

n−1∑
j=0

φ(f j
σk(ξ)(f

k
ξ (y)) = lim sup

n→∞

1
n

n−1+k∑
j=k

φ(f j
ξ (y))

= lim sup
n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y)) +

k−1∑
j=0

φ(fn+j
ξ (y)) −

k∑
j=0

φ(f j
ξ (y))


= lim sup

n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y)) = Uφ(ξ, y) = ℓ(y).

Note that fk
ξ (y) = fωk

◦ · · · ◦ fω1(y). Now, since ω is an arbitrary word, we
conclude that ℓ is constant along the random orbit of y for every ξ ∈ Λ and
hence for P-a.e. ξ ∈ Σ+. ■

Remark 5.6 In Propositions 5.3 and 5.5 one can consider any measurable
space X instead of I as the fiber space. This substitution is possible because
only the measurability of the fiber maps is used.

Remark 5.7 The countability assumption for A is not necessary for
Proposition 5.3. This result holds even if A is an infinite alphabet or any
probability space. However, in Proposition 5.5, the countability assumption
of A is crucial for the existence of the set An in (5-4).

5.2
Historical behavior

In this section, we will analyze conditions implying that F has historical
behavior. In what follows, we denote by 1A the indicator map in a
set A (i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise). We consider the
following threee conditions:

(H1) For every ξ ∈ Σ+, the measurable functions fξ : I → I are order
preserving and satisfy

fξ(0) = 0 and fξ(1) = 1;

(H2) For every y ∈ (0, 1), there exist α, β ∈ Σ+ and k, j ∈ N such that

fk
α(y) < y < f j

β(y);
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(H3) There is y∗ ∈ (0, 1) and a non-negative monotone increasing function
φ : I → R such that for every γ ∈ (m,M) where M = maxφ and
m = minφ, it holds

lim sup
n→∞

1
n

n−1∑
j=0

1[γ,M ](φ(f j
ξ (y∗))) = 1,

lim sup
n→∞

1
n

n−1∑
j=0

1[m,γ](φ(f j
ξ (y∗))) = 1,

(5-5)

for P-a.e. ξ ∈ Σ+.

Remark 5.8 Condition (H1) was assumed in the previous chapters. Note that,
if for every y ∈ (0, 1) the sets

{
ξ ∈ Σ+ : fξ(y) < y

}
and

{
ξ ∈ Σ+ : fξ(y) > y

}
have both positive measure, then condition (H2) holds. Finally,
condition (H3) holds when the skew product satisfies the arc-sine law,
see Proposition 6.6 below.

Remark 5.9 Conditions (H1) and (H2) are topological conditions. On the
other hand, condition (H3) is a statistical condition.

Proposition 5.10 Let F be a one-step skew product as in (5-1) whose
fiber maps satisfy conditions (H0)–(H3). Then there exist constants ℓ̄, h̄ ∈ R
such that

ℓ(y) = ℓ̄ and h(y) = h̄, for every y ∈ (0, 1).

Proof We prove the proposition only for the function ℓ, the proof for h is
similar and hence omitted. By (H2), given any y ∈ (0, 1) there are α, β ∈ Σ+

and j, k ∈ N such that

f j
α(y) < y < fk

β (y) for every y ∈ (0, 1).

By Proposition 5.5 we have that ℓ(f j
α(y)) = ℓ(y) = ℓ(fk

β (y)).

Claim 5.11 The function ℓ is monotone increasing.

Proof Consider y1, y2 ∈ (0, 1) with y1 < y2. Take ξ ∈ Σ+, since fξ preserves
the orientation, we have that fn

ξ (y1) < fn
ξ (y2) for every n ≥ 0. As the map φ

in (H3) also preserves the orientation, we have that φ(fn
ξ (y1)) < φ(fn

ξ (y2)) for
every n ≥ 0. Therefore, the average satisfies

1
n

n−1∑
j=0

φ(f j
ξ (y1)) <

1
n

n−1∑
j=0

φ(f j
ξ (y2)).
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Taking upper limits we have

Uφ(ξ, y1) = lim sup
n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y1)) ≤ lim sup

n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y2)) = Uφ(ξ, y2).

By Proposition 5.3, we have Uφ(ξ, y1) = ℓ(y1) and Uφ(ξ, y2) = ℓ(y2),
then ℓ(y1) ≤ ℓ(y2). This proves the claim. ■

Since ℓ is increasing, the claim implies that for any given y ∈ (0, 1), it
is constant on the interval (f j

α(y), fk
β (y)). Therefore, for every y ∈ (0, 1), ℓ is

locally constant on (0, 1). As ℓ is monotone increasing and (0, 1) is connected,
there exists a constant ℓ̄ ∈ R such that ℓ(y) = ℓ̄ for every y ∈ (0, 1). ■

Corollary 5.11.1 Let F be a one-step skew product as in (5-1) whose fiber
maps satisfy conditions (H0)–(H3). Then, for every y ∈ (0, 1), it holds

Uφ(ξ, y) = ℓ̄ and Lφ(ξ, y) = h̄, for P-a.e. ξ ∈ Σ+.

Proof By Proposition 5.3, we have that Uφ(ξ, y) = ℓ(y) and Lφ(ξ, y) = h(y)
for P-a.e. ξ ∈ Σ+. Now, by Proposition 5.10, ℓ(y) = ℓ̄ and h(y) = h̄ for every
y ∈ (0, 1), proving the corollary. ■

Theorem 5.12 Let F be a one-step skew product as in (5-1) whose fiber maps
satisfy conditions (H0)–(H3) and φ the non-negative increasing map in (H3).
Then, for every y ∈ (0, 1), it holds

Uφ(ξ, y) = maxφ and Lφ(ξ, y) = minφ, for P-a.e. ξ ∈ Σ+.

In particular, F has historical behavior for (P × λ)-a.e. point.

Proof We first prove the statement for the function Uφ. Recall that m = minφ
and M = maxφ. Consider a sequence {γk}k≥1 ⊂ (m,M) with γk → M

as k → ∞. By (H3), there exists y∗ ∈ (0, 1) such that for every k ≥ 0 there is
a set Ωk ⊂ Σ+ with P(Ωk) = 1 such that

lim sup
n→∞

1
n

n−1∑
j=0

1[γk,M ](φ(f j
ξ (y∗))) = 1, for every ξ ∈ Ωk. (5-6)

Define the set
Ω+ def=

⋂
k≥1

Ωk.

As Ω+ is a countable intersection of probability one sets, it holds P(Ω+) = 1.
Next lemma corresponds to the first assertion in the theorem.

Lemma 5.13 For every y ∈ (0, 1) it holds Uφ(ξ, y) = M for P-a.e. ξ ∈ Σ+.
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Proof By the definitions of Ω+ and of Ωk in (5-6), we have that

lim sup
n→∞

1
n

n−1∑
j=0

1[γk,M ](φ(f j
ξ (y∗))) = 1, for every ξ ∈ Ω+. (5-7)

Since φ is non-negative, for every k ≥ 0 we have that

1[γk,M ](φ(f j
ξ (y∗))) · γk ≤ φ(f j

ξ (y∗) for every ξ ∈ Ω+.

Applying the upper limit obtain

lim sup
n→∞

1
n

n−1∑
j=0

1[γk,M ](φ(f j
ξ (y∗))) · γk ≤ lim sup

n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y∗)) = Uφ(ξ, y∗).

By (5-7) it follows that γk ≤ Uφ(ξ, y∗) for every ξ ∈ Ω+.
On the other hand, by Corollary 5.11.1, for every y ∈ (0, 1) there is a

set Ωy ⊂ Σ+ with P(Ωy) = 1 such that

Uφ(ξ, y) = ℓ̄ for every ξ ∈ Ωy.

Consider Ω+
y = Ωy ∩Ω+. Since Ω+

y is an intersection of two sets with probability
one, its follows that P(Ω+

y ) = 1. Moreover, γk ≤ Uφ(ξ, y∗) = ℓ̄ for every ξ ∈ Ω+
y∗

γk ≤ ℓ̄. Noting that, by definition, m ≤ ℓ̄ ≤ M , we have that

M = lim
k→∞

γk ≤ ℓ̄ ≤ M,

proving the lemma. ■

The proof of the statement for the function Lφ is a variation of the proof
of Lemma 5.13.

Lemma 5.14 For every y ∈ (0, 1) it holds Lφ(ξ, y) = m for P-a.e. ξ ∈ Σ+.

Proof Consider {ηk} ⊂ (m,M) with ηk → m as k → ∞, arguing as in (5-7),
we get a set Ω− ⊂ Σ+ with P(Ω−) = 1 such that

lim sup
n→∞

1
n

n−1∑
j=0

1[m,ηk](φ(f j
ξ (y∗))) = 1, for every ξ ∈ Ω−. (5-8)

Moreover, since 1 = 1[m,ηk] + 1(ηk,M ], by (5-8), we have

lim inf
n→∞

1
n

n−1∑
j=0

1(ηk,M ](φ(f j
ω(y∗))) = 0 for every ω ∈ Ω−. (5-9)

Now, as φ is non-negative, for every k ≥ 0 we have

φ(f j
ξ (y∗)) ≤ 1[m,ηk](φ(f j

ξ (y∗))) · ηk + 1(ηk,M ](φ(f j
ξ (y∗))) ·M for every ξ ∈ Ω−.
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Applying the lower limit obtain

lim inf
n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y∗)) ≤ lim inf

n→∞

1
n

n−1∑
j=0

1[m,ηk](φ(f j
ξ (y∗))) · ηk

+ lim inf
n→∞

1
n

n−1∑
j=0

1(ηk,M ](φ(f j
ξ (y∗))) ·M (5-10)

Thus, in (5-10) by (5-9) we obtain

Hφ(ξ, y∗) = lim inf
n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y∗)) ≤ lim inf

n→∞

1
n

n−1∑
j=0

1[m,ηk](φ(f j
ξ (y∗))) · ηk

≤ lim sup
n→∞

1
n

n−1∑
j=0

1[m,ηk](φ(f j
ξ (y∗))) · ηk

and by (5-8) we have

Hφ(ξ, y∗) ≤ ηk, for every ξ ∈ Ω−.

On the other hand, by Corollary 5.11.1, for every y ∈ (0, 1) there is a
set Ωy ⊂ Σ+ with P(Ωy) = 1 such that

Hφ(ξ, y) = h̄ for every ξ ∈ Ωy.

Consider Ω−
y = Ωy ∩ Ω−. Since Ω−

y is the intersection of two sets, each
with probability one, it follows that P(Ω−

y ) = 1. Noting that, by definition,
m ≤ h̄ ≤ M , we can establish m ≤ h̄ ≤ ηk.

Taking the limit,
m ≤ h̄ ≤ lim

k→∞
ηk = m.

Therefore, we conclude that for every y ∈ (0, 1)

Lφ(ξ, y) = h̄ = m for every ξ ∈ Ω−
y∗ .

Proving the lemma. ■

Using Lemmas 5.13 and 5.14, and defining Φ(ξ, y) def= φ(y), it holds for
(P × λ)-a.e. point that

lim inf
n→∞

1
n

n−1∑
j=0

Φ(F j(ξ, y)) = m and lim sup
n→∞

1
n

n−1∑
j=0

Φ(F j(ξ, y)) = M.

This ends the proof of the theorem. ■
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Remark 5.15 The assumption that the alphabet A is countable plays a crucial
role in the proof of Theorem 5.12, given that Corollary 5.11.1 relies on this
assumption. However, when A is a singleton, we can treat F as a measurable
map f : I → I. In such a case, conditions (H1)–(H3) may not be necessary.
The discrete analog of Theorem 5.12 is provided by Theorem 8.7.

5.2.1
Historical behavior under an ergodic assumption

Now, we will provide alternative conditions to (H0)–(H3), as given above.
Consider the following condition:

(H0b) The measure P × λ is ergodic with respect to F . In other words, for
every F -invariant set B, it holds that (P × λ)(B) ∈ {0, 1}.

Remark 5.16 Condition (H0) is more rigid, while (H0b) provides more
flexibility by only requiring the triviality of the σ-algebra for F -invariant sets.
Moreover, it is noteworthy that the measure P × λ in (H0b) is not required to
be F -invariant.

Should the skew product F satisfy (H0b), we can obtain a weak
conclusion similar to Corollary 5.11.1, as we will prove in the following
proposition.

Proposition 5.17 Let F be a one-step skew product as in (5-1) satisfying (H0b).
Then, there are constants ℓ̄, h̄ ∈ R such that

Uφ(ξ, y) = ℓ̄ and Lφ(ξ, y) = h̄ for (P × λ)-a.e. (ξ, y) ∈ Σ+ × I.

Proof Given a constant ℓ ∈ R define the set

A(ℓ) def= {(ξ, y) ∈ Σ+ : Uφ(ξ, y) < ℓ}.

Since A(ℓ) is an F -invariant set, by (H0b), we have (P×λ)(A(ℓ)) ∈ {0, 1}. Let

ℓ̄
def= inf{ℓ : P(A(ℓ)) = 1}.

Claim 5.18 Uφ(ξ, y) = ℓ̄ for (P × λ)-a.e. (ξ, y) ∈ Σ+ × I.

Proof When P(A(ℓ̄)) = 0, we have that Uφ(ξ, y) ≥ ℓ̄ for (P × λ)-a.e. point.
Then, by definition of ℓ̄, we have that Uφ(ξ, y) < ℓ̄ + 1

n
for every n ≥ 1

and (P × λ)-a.e. point. Hence, by taking n → ∞, we find that Uφ(ξ, y) = ℓ̄

for (P × λ)-a.e. point, proving the claim in this case.
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To conclude the proof, we need to analyze also the case when P(A(ℓ̄)) = 1.
Suppose, by contradiction, that there is a set B ⊂ Ω×Σ+ with (P×λ)(B) > 0
such that Uφ(ξ, y) ̸= ℓ̄ for every (ξ, y) ∈ B. By definition of ℓ̄, we have that
(P × λ)(A(ℓ̄ − 1

n
)) = 0 for all n ≥ 1. Consider the monotonically increasing

sequence of sets
Bn

def= A
(
ℓ̄− 1

n

)
∩B, for n ≥ 1,

and note that (P × λ)(Bn) = 0 and therefore lim
n→∞

(P × λ)(Bn) = 0. However,
by the monotonicity and since (P × λ)(A(ℓ̄)) = 1,

lim
n→∞

(P × λ)(Bn) = (P × λ)(A(ℓ̄) ∩B) = (P × λ)(B) > 0,

which leads to a contradiction. Therefore, Uφ(ξ, y) = ℓ̄ for (P × λ)-a.e. point,
proving the claim. ■

The above claim provides ℓ̄ as in the statement of the proposition.
Considering the sets

Ā(h) = {ω ∈ Σ+ : Lφ(ξ, y) > h}

and arguing similarly, we also get that Lφ(ξ, y) = h̄ for (P × λ)-a.e. point,
where

h̄ = sup{h : (P × λ)(Ā(h)) = 1} ≤ maxφ,

concludes the proof. ■

In Theorem 5.12, the change from condition (H0) to (H0b) requires
a corresponding adjustment of condition (H3). We consider the adjusted
condition as follows:

(H3b) There exists J ⊂ (0, 1) with λ(J) > 0 such that for every y∗ ∈ J , there
exists a non-negative, monotonically increasing function φ : I → R
satisfying, for every γ ∈ (m,M), where M = maxφ and m = minφ,

lim sup
n→∞

1
n

n−1∑
j=0

1[γ,M ](φ(f j
ξ (y∗))) = 1,

lim sup
n→∞

1
n

n−1∑
j=0

1[m,γ](φ(f j
ξ (y∗))) = 1,

(5-11)

for P-a.e. ξ ∈ Σ+.

With this adjusted condition, we can establish, in a manner analogous to
Theorem 5.12, the following theorem.

Theorem 5.19 Let F be a one-step skew product as in (5-1) whose fiber maps
satisfy conditions (H0b) and (H3b) and φ the non-negative increasing map
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in (H3b). Then, for λ-a.e. y ∈ (0, 1), it holds

Uφ(ξ, y) = maxφ and Lφ(ξ, y) = minφ, for P-a.e. ξ ∈ Σ+.

In particular, F has historical behavior for (P × λ)-a.e. point.

Proof The proof follows the proof of Theorem 5.12. Consider a sequence
{γk}k≥1 ⊂ (m,M) with γk → M as k → ∞. By (H3b), there is a set
J ⊂ (0, 1), with λ(J) > 0 such that for every y∗ ∈ J and every k ≥ 0 there is
a set Ωk(y∗) ⊂ Σ+ with P(Ωk(y∗)) = 1 such that

lim sup
n→∞

1
n

n−1∑
j=0

1[γk,M ](φ(f j
ξ (y∗))) = 1, for every ξ ∈ Ωk(y∗). (5-12)

Define the set
Ω+

y∗
def=
⋂
k≥1

Ωk(y∗).

As Ω+
y∗ is a countable intersection of probability one sets, it holds P(Ω+

y∗) = 1.
Next lemma corresponds to the first assertion in the theorem.

Lemma 5.20 For λ-a.e. y ∈ (0, 1) it holds Uφ(ξ, y) = M for P-a.e. ξ ∈ Σ+.

Proof By the definitions of Ω+
y∗ and of Ωk(y∗) in (5-12), we have that

lim sup
n→∞

1
n

n−1∑
j=0

1[γk,M ](φ(f j
ξ (y∗))) = 1, for every ξ ∈ Ω+

y∗ . (5-13)

Since φ is non-negative, for every k ≥ 0 we have that

1[γk,M ](φ(f j
ξ (y∗))) · γk ≤ φ(f j

ξ (y∗)) for every ξ ∈ Ω+
y∗ .

Applying the upper limit, we obtain

lim sup
n→∞

1
n

n−1∑
j=0

1[γk,M ](φ(f j
ξ (y∗))) · γk ≤ lim sup

n→∞

1
n

n−1∑
j=0

φ(f j
ξ (y∗)) = Uφ(ξ, y∗).

By (5-13), it follows that

γk ≤ Uφ(ξ, y∗) for every ξ ∈ Ω+
y∗ . (5-14)

Moreover, define the set

J̄
def=
{
(ξ, y) ∈ Σ+ × I : y ∈ J and ξ ∈ Ω+

y

}
. (5-15)

Using Fubini’s Theorem, we find

(P × λ)(J̄) =
ˆ

J

P(Ω+
y ) dλ,
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since λ(J) > 0 and P(Ω+
y ) = 1 for every y ∈ J , it follows that (P × λ)(J̄) > 0.

On the other hand, by Proposition 5.17, there is a set Ω̄ ⊂ Σ+ × I with
(P × λ)(Ω̄) = 1 such that

Uφ(ξ, y) = ℓ̄ for every (ξ, y) ∈ Ω̄.

Consider Ω̄+ = Ω̄ ∩ J̄ , and (P × λ)(Ω̄+) > 0. Taking (ξ∗, y∗) ∈ Ω̄+, we have
that Uφ(ξ∗, y∗) = ℓ̄. Since (ξ∗, y∗) ∈ J̄ , then y∗ ∈ J and ξ∗ ∈ Ω+

y∗ . Therefore,
by (5-14), we have that

γk ≤ Uφ(ξ∗, y∗) = ℓ̄ for every ξ∗ ∈ Ω+
y∗ .

Noting that, by definition, m ≤ ℓ̄ ≤ M , we have that

M = lim
k→∞

γk ≤ ℓ̄ ≤ M,

proving the lemma. ■

The proof of the statement that for λ-a.e. y ∈ (0, 1) it holds Lφ(ξ, y) = m

for P-a.e. ξ ∈ Σ+ is a variation of the proof of Lemma 5.20 using the ideas of
Lemma 5.14, and hence, it is omitted, concluding the proof of the theorem. ■

Remark 5.21 Theorem 5.19 holds when A is an infinite alphabet. This is a
difference compared to Theorem 5.12 because in this theorem, the assumption
that A is countable plays a crucial role (see Remark 5.15).



6
Arc-sine Laws

We continue to study one-step skew products

F : Σ+ × I → Σ+ × I, F (ξ, y) = (σ(ξ), fξ(y))

as in (5-1). Given any y ∈ I, we study the statistical behavior of the sequence
of random variables {fn

ξ (y)}n≥0. Our goal is to analyze the historical behavior
of F when this sequence satisfies the arc-sine law (or similar distributions).
The Arc-sine Law, introduced by Lévy [14] and later formalized by Erdős and
Kac [10], reads as follows:

Theorem 6.1 (Arc-sine Law) Let {ψn}n≥0 be i.i.d. random variables
having mean zero and finite variance. Consider

Sn
def=

n−1∑
j=0

ψj and Nn
def= # {j ∈ {0, . . . , n− 1} : Sj > 0}

Then,
lim

n→∞
P
( 1
n
Nn < α

)
= 2
π

arcsin (
√
α), α ∈ (0, 1).

The chapter is organized as follows. In Section 6.1, we give two auxiliary
definitions derived from the Arc-sine law: the fiber maps and the skew product
arc-sine laws. In Section 6.2, in combination with the main result of the
previous chapter (Theorem 5.12), we prove that if the skew product satisfies
the fiber arc-sine law, then F has historical behavior, see Theorem 6.8.1.

6.1
Fiber and skew product arc-sine Laws

In this section, we introduce two types of arc-sine laws, for the fiber maps
and to skew products functions. Firstly, we present it for the fiber maps, and
additionally we introduce a similar weak property. Recall that λ represents the
Lebesgue measure in I.

Definition 6.2 (Fiber arc-sine laws ) Let F be a skew product as in (5-1)
and ψ : I → R a non-negative monotone increasing continuous function.
Let m = minψ and M = maxψ. The pair (F, ψ) satisfies
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– the fiber arc-sine law if, for every y ∈ (0, 1), every γ ∈ (m,M), and every
α ∈ (0, 1) it simultaneously holds

lim
n→∞

P

ξ ∈ Σ+ : 1
n

n−1∑
j=0

1[γ,M ](ψ(f j
ξ (y))) < α


 = 2

π
arcsin

√
α, (6-1)

lim
n→∞

P

ξ ∈ Σ+ : 1
n

n−1∑
j=0

1[m,γ](ψ(f j
ξ (y))) < α


 = 2

π
arcsin

√
α; (6-2)

– the fiber weak arc-sine law if, there is y∗ ∈ J such that, for every
γ ∈ (m,M) and every α ∈ (0, 1) it simultaneously holds

lim sup
n→∞

P

ξ ∈ Σ+ : 1
n

n−1∑
j=0

1[γ,M ](ψ(f j
ξ (y∗))) < α


 < 1,

lim sup
n→∞

P

ξ ∈ Σ+ : 1
n

n−1∑
j=0

1[m,γ](ψ(f j
ξ (y∗))) < α


 < 1.

(6-3)

– the fiber λ-weak arc-sine law if, there is J ⊂ (0, 1), with λ(J) > 0 such
that for every y∗ ∈ J , every γ ∈ (m,M) and every α ∈ (0, 1), equations
in (6-3) hold.

Remark 6.3 A pair (F, ψ) satisfying the fiber arc-sine law also satisfies the
fiber λ-weak arc-sine law. However, the converse does not hold in general.
In [17], Nakamura et al. proved that there is a distribution that satisfies the fiber
λ-weak arc-sine law but generally does not satisfy the fiber arc-sine law. We
refer to the fiber (λ-)weak arc-sine law because it encompasses any distribution
that satisfies (6-3), with the main example being the fiber arc-sine law.

Now, we present the arc-sine law for a skew product F as in (5-1) with
respect to the reference measure P × λ of the product space.

Definition 6.4 (Skew product arc-sine law) Let F be a skew product as
in (5-1), and let ψ : I → R be a non-negative, monotone increasing, continuous
function. Consider the function Ψ : Σ+ × I → R defined by Ψ(ξ, y) def= ψ(y).
The pair (F, Ψ) satisfies the arc-sine law if, for every α ∈ (0, 1) and every
γ ∈ (m,M), it simultaneously holds

lim
n→∞

(P × λ)
(ξ, y) : 1

n

n−1∑
j=0

1[m,γ](Ψ(F j(ξ, y))) < α


 = 2

π
arcsin

√
α,

lim
n→∞

(P × λ)
(ξ, y) : 1

n

n−1∑
j=0

1[γ,M ](Ψ(F j(ξ, y))) < α


 = 2

π
arcsin

√
α.
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Now, we establish the relation between the fiber arc-sine
Law (Definition 6.2) and the arc-sine Law for a skew product (Definition 6.4).

Proposition 6.5 Let F be a skew product as in (5-1) and let ψ : I → R be a
non-negative, monotone increasing, continuous function.

– If (F, ψ) satisfies the fiber arc-sine law, then (F, Ψ) satisfies the skew
product arc-sine law;

– If (F, Ψ) satisfies the skew product arc-sine law, then (F, ψ) satisfies the
fiber λ-weak arc-sine law. In particular the (F, ψ) satisfies the fiber weak
arc-sine law.

Proof To prove the first statement, given γ ∈ (m,M) let

I0(γ) def= [m, γ] and I1(γ) def= [γ,M ].

For every n ∈ N, and every α, γ ∈ (0, 1) define the set

Ai,n
def=

(ξ, y) ∈ Σ+ × I : 1
n

n−1∑
j=0

1Ii(γ)(Ψ(F j(ξ, y))) ≤ α

 for i = 0, 1.

where Ψ(ξ, y) def= ψ(y) for every (ξ, y) ∈ Σ+ × I. For each y ∈ I, we denote by
Ai,n(y) the projection on Σ+ of Ai,n ∩ (Σ+ × {y}). In particular,

Ai,n =
{
(ξ, y) ∈ Σ+ × I : y ∈ I and ξ ∈ Ai,n(y)

}
.

Hence, since F satisfies the fiber arc-sine law, by applying Fubini’s and
Lebesgue’s dominated convergence theorems, we find that

lim
n→∞

(P × λ)(Ai,n) = lim
n→∞

ˆ
P(Ai,n(y)) dλ

=
ˆ

lim
n→∞

P(Ai,n(y)) dλ = 2
π

arcsin
√
α.

Now, we prove the second implication. Assume that F satisfies the skew
product arc-sine law for a function Ψ : Σ+ × I → R. As before, we define Ai,n

and Ai,n(y). Notice that these sets depend on α ∈ (0, 1) and γ ∈ (m,M) where
m = minφ and M = maxφ. We write Ai,n,α,γ and Ai,n,α,γ(y) to emphasize
this dependence here. Suppose, by contradiction, that for λ-a.e. y ∈ (0, 1)
it holds that lim supn→∞ P(Ai,n,α,γ(y)) = 1 for some i ∈ {0, 1}, α ∈ (0, 1)
and γ ∈ (m,M). Then, by applying Fubini’s and Lebesgue’s dominated
convergence theorems again,
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lim
n→∞

(P × λ)(Ai,n,α,γ) =
ˆ

lim sup
n→∞

P(Ai,n,α,γ(y)) dλ = 1. (6-4)

However, since F satisfies the skew product arc-sine law,

lim
n→∞

(P × λ)(Ai,n,α,γ) = 2
π

arcsin
√
α < 1,

which contradicts (6-4). Therefore, there exists J ⊂ (0, 1) with λ(J) > 0 such
that, for every y∗ ∈ J , it holds

lim sup
n→∞

P(Ai,n,α,γ(y∗)) < 1 for all i = 0, 1, α ∈ (0, 1), and γ ∈ (m,M).

This proves the second statement and, therefore, the proposition. ■

6.2
Arc-sine Laws and historical behavior: a characterization

We establish a connection between historical behavior and the arc-sine
Law. Recall that in our settings, a skew product F has historical behavior
if it satisfies conditions (H1)–(H3). As mentioned in Remark 5.9, (H3) is a
statistical condition. We now present the connection between condition (H3)
and the fiber weak arc-sine law in the following proposition:

Proposition 6.6 Let F be a skew product as in (5-1) and let ψ : I → R be a
non-negative, monotone increasing, continuous function.

– If F satisfies (H0) and (F, ψ) satisfies the fiber weak arc-sine law, then
ψ satisfies condition (H3).

– If F satisfies (H0b) and (F, ψ) satisfies the fiber λ-weak arc-sine law,
then ψ satisfies condition (H3b).

Proof Given γ ∈ [m,M ], let I0(γ) def= [m, γ] and I1(γ) def= (γ,M). Since (F, ψ)
satisfies the fiber (λ-)weak arc-sine law, there exists J ⊂ (0, 1) such that for
every y∗ ∈ J , it holds that

lim sup
n→∞

P

ξ ∈ Σ+ : 1
n

n−1∑
j=0

1Ii(γ)(ψ(f j
ξ (y∗))) ≥ α


 > 0, i = 0, 1.

Define the set

Bi(α, y∗) def=

ξ ∈ Σ+ : lim sup
n→∞

1
n

n−1∑
j=0

1Ii(γ)(ψ(f j
ξ (y∗))) ≥ α

 i = 0, 1. (6-5)

Now, by Lemma A.7, we have

P (Bi(α, y∗)) ≥ lim sup
n→∞

P
({
ξ ∈ Σ+ : 1

n

n−1∑
j=0

1Ii(γ)(ψ(f j
ξ (y∗))) ≥ α

})
> 0. (6-6)
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Claim 6.7 If (H0) holds, then P(Bi(α, y∗)) = 1 for every y∗ ∈ J .

Proof By Lemma A.11, the set Bi(α, y∗) belongs to the tail
algebra T ({f j

ξ (y∗)}j≥0). By (H0), we have P(Bi(α)) ∈ {0, 1}, i = 0, 1.
Thus, since P(Bi(α)) > 0, we conclude P(Bi(α)) = 1, i = 0, 1. ■

Claim 6.8 If (H0b) and fiber λ-weak arc-sine law holds, then

P(Bi(α, y∗)) = 1 for λ− a.e y∗ ∈ J

Proof Note that, in this case λ(J) > 0. Fix α ∈ (0, 1) and define the set

Bi(α) def=
{
(ξ, y∗) ∈ Σ+ × I : y∗ ∈ J and ξ ∈ Bi(α, y∗)

}
Note that this set is F -invariant. By (H0b), we have (P × λ)(Bi(α)) ∈ {0, 1}.
Applying Fubini’s Theorem A.5, it holds that

(P × λ)(Bi(α)) =
ˆ

J

P(Bi(α, y)) dλ,

since, by (6-6), P(Bi(α, y∗)) > 0 for every y∗ ∈ J . Then (P × λ)(Bi(α)) > 0,
and therefore (P × λ)(Bi(α)) = 1. Hence, again using Fubini’s Theorem, we
have

P(Bi(α, y∗)) = 1 for λ-a.e. y∗ ∈ J,

concluding the proof of the claim. ■

Note that Claims 6.7 and 6.8 provide a set J̄ ⊂ J such that P(Bi(α, y∗)) =
1 for every y∗ ∈ J̄ . In the case of the fiber λ-weak arc-sine law, by Claim 6.8,
λ(J̄) > 0. Now, as α → 1, we obtain that for every y∗ ∈ J̄ , it holds

lim sup
n→∞

1
n

n−1∑
j=0

1Ii(γ)(ψ(f j
ξ (y∗))) = 1 for P-a.e. ξ ∈ Σ+, i = 0, 1.

Therefore, conditions (H3) and (H3b) hold in the respective cases. ■
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By applying Proposition 6.6 to Theorem 5.12, we obtain the following
corollary.

Corollary 6.8.1 Let F be a skew product as in (5-1) whose fiber maps
satisfy conditions (H0)–(H2). Let φ : I → I be a non-negative, increasing,
non-constant function. Suppose that (F, φ) satisfies the fiber weak arc-sine law.
Then, F has historical behavior for (P × λ)-a.e. point.

Proof As (F, φ) satisfies the fiber weak arc-sine law, by Proposition 6.6, the
fiber maps of F satisfy condition (H3). Then, by Theorem 5.12, the skew
product F has historical behavior for (P × λ)-a.e. point. ■

Corollary 6.8.2 Let F be a skew product as in (5-1) whose fiber maps satisfy
conditions (H0b). Let φ : I → I be a non-negative, increasing, non-constant
function. Suppose that (F, φ) satisfies the fiber λ-weak arc-sine law. Then, F
has historical behavior for (P × λ)-a.e. point.

Proof As (F, φ) satisfies the fiber weak arc-sine law, by Proposition 6.6, the
fiber maps of F satisfy condition (H3b). Then, by Theorem 5.19, the skew
product F has historical behavior for (P × λ)-a.e. point. ■

Remark 6.9 In light of Proposition 6.5 under the corresponding assumptions
of Corollaries 6.8.1 and 6.8.2, any definition of the arc-sine law in our setting,
such as:

– Fiber arc-sine law,

– Fiber (λ-)weak arc-sine law, and

– Skew product arc-sine law.

implies historical behavior.



7
Zero Schwarzian derivative: historical behavior

In this chapter, we analyze the relations between zero Schwarzian
derivative and historical behavior for one-step skew products F as in (5-1).
We will see that if the Schwarzian derivative of fξ are almost surely zero,
then the one-step skew product F satisfies the fiber arc-sine law. Then, by
the results in Chapters 5 and 6, the one-step skew product F has historical
behavior. These facts were stated by Bonifant and Milnor in [4, Theorem 6.2].
However, they only provide a rough sketch of the proof with several incomplete
steps. Here we present a version of this result with a complete proof. Relative
to the proof and the results in [4], these are the main differences:

– In [4, Hypothesis 6.1] the authors considers any probability space,
without restrictions. Compare with Remark 5.7 where only at most
countable spaces are considered. Nowadays, the statement in [4] in this
full generality is controversial.

– In [4, page 13], it is claimed, without a proof, that the functions Uφ

and Lφ in (5-2) are independent of ξ. This claim is not obvious. In
Proposition 5.3 we prove this assertion.

– In [4, page 13], it is claimed, without a proof, that Uφ(y) = Uφ(fξ(y))
and Lφ(y) = Lφ(fξ(y)). These statements are proven in Propositions 5.3
and 5.5.

– In [4, page 13], it is stated, without a proof, that the functions y 7→
Uφ(y) and y 7→ Lφ(y) are constant. This statement is proved in
Proposition 5.10.

7.1
Zero Schwarzian derivative

We consider a one-step skew product F as in (5-1), where fξ : I → I

are C3-diffeomorphism. Recall that, F has historical behavior if satisfies
contitions (H0)–(H3) (see Theorem 5.12). In what follows, we denote by id the
identity map id : I → I. Throughout this chapter, we consider the following
conditions on the skew product :

(BM1) Sfξ(y) = 0 for (P × λ)-a.e. (ξ, y) ∈ Σ+ × I,
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(BM2) the Lyapunov exponents (see (2-4)) satisfy L(0) = L(1) = 0, and

(BM3) fξ ̸= id for P-a.e. ξ ∈ Σ+.

As will be seen in Section 7.2, Conditions (H1) and (BM1)–(BM3) are
equivalent to the following representation of the fiber maps of F :

fξ(y) = a(ξ)y
1 + (a(ξ) − 1)y for y ∈ I and ξ = (ξi)i≥0 ∈ Σ+ = AN, (7-1)

where a : Σ+ → (0,+∞) with a(ξ) def= a(ξ0), and it satisfies
ˆ

log a(ξ) dP = 0 and a(ξ0) ̸= 1 for all ξ0 ∈ A.

We will also asume the following asumption:

(BM4)
´

(log a(ξ))2 dP < +∞ .

The following theorem shows that if the Schwarzian derivative of the
fiber maps of the skew product F are almost surely null (i.e., (BM1) holds),
then the skew product has historical behavior.

Theorem 7.1 Let F be a skew product as in (5-1) satisfying (H1)
and (BM1)–(BM4). Then F satisfies conditions (H0), (H2), and the pair
(F, id) satisfies the fiber arc-sine law. In particular, the skew product F

satisfies (H3) with the function id.

The proof of Theorem 7.1 is completed in Section 7.2.
In our setting, the result by Bonifant and Milnor reads as follows:

Corollary 7.1.1 Let F be a skew product as in (5-1) satisfying (H1)
and (BM1)–(BM4). Then for every y ∈ (0, 1),

Uid(ξ, y) = 1 and Lid(ξ, y) = 0, for P-a.e. ξ ∈ Σ+.

In particular, the skew product F has historical behavior for (P×λ)-a.e. point.

Proof By Theorem 7.1, the map F satisfies conditions (H0)–(H3), where
id : I → I serves as the increasing function in (H3). By Theorem 5.12, it
follows that for every y ∈ (0, 1), it holds

Uid(ξ, y) = max id = 1 and Lid(ξ, y) = min id = 0, for P-a.e. ξ ∈ Σ+.

Consequently, F has historical behavior, proving the corollary. ■

Remark 7.2 The assumption that the alphabet A is at most countable
plays a crucial role in our proof of Theorem 5.12 and hence in the proof
of Corollary 7.1.1.
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7.2
Proof of Theorem 7.1

We first observe that the zero Schwarzian derivative implies that
the functions fξ are fractional linear, as given in (7-1). Condition (BM1)
and Proposition B.1 together imply that fξ is a fractional linear map for
every ξ ∈ Σ+. Considering condition (H1) which ensures that the fiber maps
fix the points 0 and 1, these fiber maps take the form:

fξ(y) = a(ξ)y
1 + (a(ξ) − 1)y ,

where a : Σ+ → (0,+∞) and a(ξ) def= a(ξ0). Condition (BM3) further ensures
that a(ξ) ̸= 1 for every ξ ∈ Σ+. Now, note that

f ′
ξ(y) = a(ξ)

((a(ξ) − 1) y + 1)2 ,

we find that

L(0) =
ˆ

log(f ′
ξ(0)) dP =

ˆ
log(a(ξ)) dP.

By (BM2), it follows that
´

log(a(ξ)) dP = 0.

We split the proof into three parts (Propositions 7.3, 7.5, and 7.12).

Proposition 7.3 Let F be a skew product as in (5-1) satisfying (H1) and
(BM1)–(BM4). For every y ∈ (0, 1) the sets

{ξ ∈ Σ+ : fξ(y) < y} and {ξ ∈ Σ+ : fξ(y) > y}

have both positive probability P. In particular, the map F satisfies (H2).

Proof Consider now the sets

Ω1
def= {ξ ∈ Σ+ : a(ξ) < 1} and Ω2

def= {ξ ∈ Σ+ : a(ξ) > 1}.

Note that as a(ξ) ̸= 1 for every ξ, we have

P(Ω1) + P(Ω2) = 1.

Claim 7.4 P(Ω1) > 0 and P(Ω2) > 0.
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Proof We argue by contradiction, suppose that P(Ω1) = 1. Then,

L(0) =
ˆ

log(f ′
ξ(0)) dP =

ˆ
Ω1

log(a(ξ)) dP =
ˆ

Ω1

log(a(ξ)) dP < 0.

Contradicting that L(0) = 0. A similar contradiction arises assuming that
P(Ω2) = 1. This proves the claim. ■

We are now prove that fξ(y) < y for every ξ ∈ Ω1. For that consider
any ξ ∈ Ω1 and note than a(ξ) < 1. Note that if y ∈ (0, 1) then y2 < y. Thus,

a(ξ)y − y = (a(ξ) − 1)y < (a(ξ) − 1)y2.

This inequality implies that

a(ξ)y < (a(ξ) − 1)y2 + y =
(
(a(ξ) − 1)y + 1

)
y

and therefore
a(ξ)y

(a(ξ) − 1)y + 1 < y.

Therefore, by equation (7-1), we get fξ(y) < y for every ξ ∈ Ω1, proving the
assertion. To prove that fξ(y) > y, for every ξ ∈ Ω2, we argue similarly.

Claim 7.4 now implies that for every y ∈ (0, 1) the sets

{ξ ∈ Ω1 : fξ(y) < y} and {ξ ∈ Ω2 : fξ(y) > y},

have both positive probability, proving the first part of proposition.
Finally, by Remark 5.8 the skew produc F satisfies condition (H2). ■

Proposition 7.5 Let F be a skew product as in (5-1) satisfying (H1) and
(BM1)–(BM4). Then the pair (F, id) satisfies the fiber arc-sine law. In
particular, F satisfies (H3).

Proof To prove the proposition, we find appropriate functions associated
with {fξ} to which the Arc-sine Law (Theorem 6.1) can be applied. That
is equations (6-1) and (6-2) holds. We denote this new family by

{
f̂n

ξ

}
n≥0

.
Thereafter we extend the properties of these new random variables to initial
the initial family

{
fn

ξ

}
n≥0

.

The auxiliary family f̂ξ. We start by consider an auxiliary change of
variables. For that define the increasing continuous bijection

h : (0, 1) → R, h(y) def= log
(

y

1 − y

)
,
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and the new fiber maps given by

f̂ξ : R → R, f̂ξ(t) def= h ◦ fξ ◦ h−1(t). (7-2)

For the next lemma, recall the functions a : Σ+ → (0,∞) in (7-1).

Claim 7.6 For every t ∈ R, f̂ξ(t) = t+ log(a(ξ)).

Proof Fix ξ ∈ Σ+. Given any y ∈ (0, 1) and consider kξ(y) = h ◦ fξ(y).
Recalling (7-1) it follows

kξ(y) = log
 a(ξ)y

1+(a(ξ)−1)y

1 −
(

a(ξ)y
(a(ξ)−1)y+1

)
 = log

(
a(ξ)y

1 + (a(ξ) − 1)y − a(ξ)y

)

= log
(
a(ξ)y
1 − y

)
= log

(
y

1 − y

)
+ log(a(ξ))

= h(y) + log(a(ξ)).

(7-3)

Write now y = h−1(t) = et

1+et . Hence, by (7-3)

f̂ξ(t) = h ◦ fξ ◦ h−1(t) = kξ ◦ h−1(t) = kξ(h−1(t)) = t+ log(a(ξ)),

proving the claim. ■

The family f̂ξ satisfies the Arc-sine Law. The orbit of a point t ∈ R
under f̂ξ, ξ ∈ Σ+, is defined by

f̂ j
ξ (t) = f̂ξj−1 ◦ · · · ◦ f̂ξ0(t) = t+ log(a(ξ0)) + · · · + log(a(ξj−1)), j ≥ 1. (7-4)

Now, define the following auxiliary random variables for every t ∈ R,

Xj,t(ξ) def= f̂ j+1
ξ (t) − f̂ j

ξ (t) = log(a(ξj)) = log(a(σj(ξ))), (7-5)

Yj,t(ξ) def= f̂ j
ξ (t) − f̂ j+1

ξ (t) = − log(a(ξj)) = − log(a(σj(ξ))), (7-6)

where the last two equalities in (7-5) and (7-6) are result from the orbit of t
under f̂ξ in (7-4). As these random variables do not depend on t we simply
write Xj(ξ) def= Xj,t(ξ) and Yj(ξ) def= Yj,t(ξ).

Remark 7.7 Since P = ρN is the Bernoulli measure, the sequences {Xj}j≥0

and {Yj}j≥0 of random variables are i.i.d.. Now we construc the following
random variables

Claim 7.8 The sequences of random variables {Xj}j≥0 and {Yj}j≥0 verifies
the hypotheses of the Arc-sine Law (Theorem 6.1).
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Proof We prove the lemma only for the random variables {Xj}j≥0; the proof
for {Yj}j≥0 is similar and hence omitted. Note that, by (7-5), the mean of any
Xj is ˆ

Xj(ξ) dP =
ˆ

log(a(σj(ξ))) dP. (7-7)

Since, by hypothesis (BM2),

L(0) = L(1) =
ˆ

log a(ξ) dP = 0.

As P is σ-invariant, it follows that Xj has mean zero for every j ≥ 0.
Now consider the variance

Var(Xj) =
ˆ

(Xj(ξ))2 dP −
(ˆ

Xj(ξ) dP
)2

.

Thus, since Xj has zero mean, the measure P is σ-invariant and (BM4), it
holds

Var(Xj) =
ˆ

(log a(σj(ξ))2 dP =
ˆ

(log a(ξ))2 dP < +∞.

Hence, it verifies the hypotheses of Theorem 6.1, concluding the proof. ■

To see that the pair (F, id) satisfies the fiber arc-sine law, we need to
check that equations (6-1) and (6-2) hold for {f j

ξ (t)}j≥0. For this it is enough
to see that these equations hold for {f̂ j

ξ (t)}j≥0.

Lemma 7.9 Consider any t ∈ R, then {f̂ j
ξ (t)}j≥0 satisfies (6-1) and (6-2).

Proof We first prove that {f̂ j
ξ (t)}j≥0 satisfies (6-1). Recall that, by

Lemma 7.8 we can apply the arc-sine law to the sequences of i.i.d. random
variables {Xj}j≥0 and {Yj}j≥0.

Claim 7.10 Equation (6-1) holds for {f̂ j
ξ (t)}j≥0 for every t ∈ R.

Proof For each n > 0, consider the sum

Sn(ξ) def=
n−1∑
j=0

Xj(ξ) = f̂n
ξ (t) − t (7-8)

and define
Nn(ξ) def= # {j ∈ {1, . . . , n} : Sj(ξ) > 0} ,

where #B denotes the cardinality of the set B. By (7-8) we have

Nn(ξ) = # {j ∈ {1, . . . , n} : Sj(ξ) > 0}

= #
{
j ∈ {1, . . . , n} : f̂ j

ξ (t) − t > 0
}

=
n−1∑
j=0

1[t,∞](f̂ j
ξ (t)).

(7-9)
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Applying the arc-sin law (Theorem 6.1) to the sequence {Xj}, we have the
following for every α ∈ (0, 1)

lim
n→∞

P
({
ξ ∈ Σ+ : 1

n
Nn,t(ξ) < α

})
= 2
π

arcsin
√
α. (7-10)

Using (7-9), the previous equality reads as follows

lim
n→∞

P

ξ ∈ Σ+ : 1
n

n−1∑
j=0

1[t,∞](f̂ j
ξ (t)) < α


 = 2

π
arcsin

√
α, (7-11)

completing the proof of the claim. ■

To prove that {f̂ j
ξ (t)}j≥0 satisfies (6-2), we consider a variation of the

proof of Claim 7.10. For each n ≥ 0, consider the sum

S̄n(ξ) =
n−1∑
j=0

Yj(ξ) = t− f̂n
ξ (t) (7-12)

and define
N̄n(ξ) def= #

{
j ∈ {1, . . . , n} : S̄j(ξ) > 0

}
.

By (7-12) we have

N̄n(ξ) = #
{
j ∈ {1, . . . , n} : S̄j(ξ) > 0

}
= #

{
j ∈ {1, . . . , n} : t− f̂n

ξ (t) > 0
}

=
n−1∑
j=0

1[−∞,t](f̂ j
ξ (t)).

(7-13)

Applying the arc-sin law (Theorem 6.1) to the sequence {Yj}j≥0, we get
the following for every α ∈ (0, 1)

lim
n→∞

P
({
ξ ∈ Σ+ : 1

n
N̄n(ξ) < α

})
= 2
π

arcsin
√
α. (7-14)

By (7-13), the previous equality reads as follows

lim
n→∞

P

ξ ∈ Σ+ : 1
n

n−1∑
j=0

1[0,y](f̂ j
ξ (y)) < α


 = 2

π
arcsin

√
α, α ∈ (0, 1),

ending the proof that sequence {f̂ j
ξ }j≥0 satisfies equation (6-2) and therefore

of the lemma. ■

Translating properties to the initial family

Lemma 7.11 Suppose that {f̂ j
ξ (t)}j≥0 satisfies equations (6-1) and (6-2)

for every t ∈ R. Then {f j
ξ (y)}j≥0 satisfies equations (6-1) and (6-2) for

every y ∈ (0, 1).
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Proof Fix ξ ∈ Σ+. Given any t ∈ R, by (7-2) we have that for j ≥ 0,

f̂ j
ξ (t) = h ◦ f j

ξ ◦ h−1(t). (7-15)

Write y = h−1(t) and recall that h is a bijection. Thus, by (7-15) we obtain

1[t,+∞)(f̂ j
ξ (t)) = 1[t,+∞)

(
h ◦ f j

ξ ◦ h−1(t)
)

=

 1 if h ◦ f j
ξ ◦ h−1(t) ≥ t,

0 if h ◦ f j
ξ ◦ h−1(t) < t,

=

 1 if f j
ξ ◦ h−1(t) ≥ h−1(t),

0 if f j
ξ ◦ h−1(t) < h−1(t),

=

 1 if f j
ξ (y) ≥ y,

0 if f j
ξ (y) < y,

= 1[y,1](f j
ξ (y)).

(7-16)

Since {f̂ j
ξ (t)}j≥0 satisfies equations (6-1) and (6-2), by (7-16) we have that for

every y ∈ (0, 1) and every α ∈ (0, 1),

lim
n→∞

P

ξ ∈ Σ+ : 1
n

n−1∑
j=0

1[y,1](f j
ξ (y)) < α


 = 2

π
arcsin

√
α,

lim
n→∞

P

ξ ∈ Σ+ : 1
n

n−1∑
j=0

1[0,y](f j
ξ (y)) < α


 = 2

π
arcsin

√
α.

This concludes the proof of the lemma. ■

Lemmas 7.9 and 7.11 imply that (F, id) satisfies the fiber arc-sine law.
Then, by Remark 6.3, the pair (F, id) satisfies the fiber weak arc-sine law.
Therefore, according to Proposition 6.6, condition (H3) holds. This concludes
the proof of Proposition 7.5. ■

Proposition 7.12 Let F be a skew product as in (5-1) satisfying (H1) and
(BM1)–(BM4). Then, F satisfies (H0).

Proof Define the random variable X−1(ξ) = t for every ξ ∈ Σ+ with t ∈ R.
Consider the sums {S0}j≥−1 defined by

Sn =
n−1∑

j=−1
Xj, for every n ≥ 0.

Since X−1 is independent of itself and hence independent of any other
random variable, we have that {Xj}j≥−1 is i.i.d. (see Remark 7.7). By
the Hewitt-Savage Zero-One Law (see Theorem A.12), the tail σ-algebra
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T ({Sj}j≥0) is trivial. Now, observe that

S0 = t and Sn = f̂n
ξ (t), n ≥ 1.

Hence, the tail σ-algebra T ({f̂ j
ξ (t)}j≥0) is trivial. Recall that f̂ξ(t) =

h ◦ fξ ◦ h−1(t), where h is an increasing continuous function given in (7-2).
Then, the σ-algebra generated by fξ(y) for every y ∈ I, is equal to the
σ-algebra generated by f̂ξ(t), for every t ∈ R. Therefore, the tail σ-algebra
T ({f̂ j

ξ (t)}j≥0) is also trivial, concluding the proof of the proposition. ■

Together, Propositions 7.3, 7.5 and 7.12 conclude the proof
of Theorem 7.1.

7.2.1
Zero Schwarzian derivative and ergodic assumption

Now, we study the ergodic properties of the one-step skew product
F̂ : Σ+ × R → Σ+ × R defined by

F̂ (ξ, t) def= (σ(ξ), f̂ξ(t)), (7-17)

where f̂ξ(t) = t + log(a(ξ0)) as in (7-2). Note that the measure P × m is
F -invariant, where m is the Lebesgue measure in R. We are interested in
knowing if the product measure P×m is ergodic. For this purpose, we consider
the following condition:

(E1) The smallest closed subgroup of (R,+) containing log(a(ξ0)) for
every ξ0 ∈ A is R.

The following theorem can be found in [12, Corollary 2] and [11,
Corollary 3], see also [5].

Theorem 7.13 Let F̂ be a skew product as in (7-17) satisfying (E1). Then,
F̂ is ergodic with respect to the measure P ×m.

In the following proposition, we obtain a weak result related to
Theorem 7.1.

Proposition 7.14 Let F be a skew product as in (5-1) satisfying (H1)
and (BM1)–(BM4). Suppose that F satisfies (E1). Then F satisfies conditions
(H0b) and the pair (F, id) satisfies the fiber arc-sine law. In particular, the
skew product F satisfies (H3b) with the function id.
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Proof By Theorem 7.13, we conclude that the measure P×m is ergodic with
respect to F̂ . Since f̂ξ(t) = h ◦ fξ ◦ h−1(t), where h is an increasing continuous
function defined in (7-2), there is a homeomorphism H : Σ+ × (0, 1) → Σ+ ×R
defined by H = id × h such that H ◦ F = F̂ ◦ H. As F̂ and F are
conjugated, then ν = (H−1)∗(P × m) is σ-finite ergodic F -invariant measure.
Since H−1 = id × h−1 and h−1 smooth, we get that ν is equivalent to P × λ.
This implies P × λ satisfies (H0b).

On the other hand, using Proposition 7.5, we establish that (F, id)
satisfies the fiber arc-sine law. Then, according to Proposition 6.6, it follows
that F satisfies (H3b), proving the proposition. ■



8
Historical behavior in other settings

In this chapter, we analyze the existence of historical behavior and
the arc-sine law independently of the Schwarzian derivative in a different
settings. First, we consider skew products, which are studied through their
core skew product. Second, we study full branch almost expanding interval
functions. In Section 8.1, we provide some families of skew products where
the fiber (λ-)weak arc-sine law is satisfied. In Section 8.2, following the ideas
of Theorem 5.12 and Corollary 6.8.1, we prove Theorem 8.7, dealing with
historical behavior for interval functions. In Section 8.3, we provide a class
of interval functions (so-called Thaler functions) that have historical behavior
almost everywhere. This class generalizes the Manneville-Pomeu functions.

8.1
Skew products

In this section, we study skew products that satisfy the fiber weak arc-sine
law and also have historical behavior. Following Nakamura et al. [17], consider
the probability space

(Σ+
2 ,P) =

(
{0, 1}N,

(1
2δ0 + 1

2δ1

)N)

and let I = [0, 1] endowed with the Lebesgue measure λ. Consider the one-step
skew product

F : Σ+
2 × I → Σ+

2 × I, F (ω, y) def= (σ(ω), fω(y)) (8-1)

where the fiber maps fξ = fξ0 , ξ0 ∈ {0, 1}, such that there are c ∈ (0, 1
2 ], t > 1,

and g0 and g1 are order-preserving measurable functions,

g0 :
[
c, 1 − c

t

]
→
[
c

t
, 1 − c

]
and g1 :

[
c

t
, 1 − c

]
→ [c, 1 − c] ,
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Figure 8.1: Fiber maps Figure 8.2: Fiber core maps.

satisfying that

f0(y) def=



y

t
if y ∈ [0, c),

g0(y) if y ∈
[
c, 1 − c

t

)
,

ty − (t− 1) if y ∈
[
1 − c

t
, 1
]
,

f1(y) def=


ty if y ∈

[
0, c

t

)
,

g1(y) if y ∈
[

c
t
, 1 − c

)
,

y + (t− 1)
t

if y ∈ [1 − c, 1].

See Figure 8.1. Note that these skew products satisfy (H1) and

f0(y) < y and f1(y) > y for every y ∈ (0, 1).

This implies that the condition (H2) is also satisfied.
Now, we introduce some notation and definitions. Let J ⊂ I be the

compact interval given by J def= I− ∪ Ic ∪ I+, where

I− def=
[
c

t
, c
)
, Ic

def= [c, 1 − c), and I+ def=
[
1 − c, 1 − c

t

)
. (8-2)

Associated with F , we define the core one-step skew product

Fcore : Σ+
2 × J → Σ+

2 × J, Fcore(ξ, y) def= (σ(ξ), hξ(y)), (8-3)

where the fiber core maps hξ = hξ0 , ξ0 ∈ {0, 1}, are the form

h0(y) def=

g1(y) if y ∈ I−,

g0(y) if y ∈ Ic ∪ I+,

h1(y) def=

g1(y) if y ∈ I− ∪ Ic,

g0(y) if y ∈ I+.

(8-4)

See Figure 8.2. Recall that a non-zero measure ν on J is called Fcore-stationary
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if P × ν is Fcore-invariant (see Definition A.18 and Proposition A.19). Also, ν
is said to be discrete, its support of ν is finite.

We consider that F satisfies the following condition:

(N1) There is a discrete Fcore-stationary measure ν such that ν(I−)ν(I+) > 0.

The following theorem, borrowed from Nakamura et al. [17], claims that
under that assumption (N1), one-step skew products F as in (8-1) satisfy the
fiber weak arc-sine law.

Theorem 8.1 Let F be a skew product as in (8-1) satisfying (N1) and ν

the measure in (N1). Then, for every y ∈ supp(ν), every γ ∈ (0, 1), and
every α ∈ (0, 1), for i = 0, 1, it holds that

lim
n→∞

P

ξ : 1
n

n−1∑
j=0

1Ii(γ)(f j
ξ (y)) < α


 =

ˆ α

0

1
π
√
y(1 − y)

· b

b2y + (1 − y) dλ,

where I0(γ) def= [0, γ], I1(γ) def= [γ, 1], b def= 1−β
β

, and β def= ν(I−)
ν(I−)+ν(I+) .

Remark 8.2 In the case where ν(I−) = ν(I+), we have β = 1/2 and b = 1.
Consequently, for i = 0, 1, it follows that

lim
n→∞

P

ξ ∈ Σ+
2 : 1

n

n−1∑
j=0

1Ii(γ)(f j
ξ (y)) < α

 =
ˆ α

0

1
π
√
y(1 − y)

dλ

= 2
π

arcsin
√
α.

Therefore, Theorem 8.1 is referred to as the generalized arc-sine law.

Recall that a skew product that satisfies conditions (H0)–(H2)
and the fiber weak arc-sine law has historical behavior almost
everywhere (see Corollary 6.8.1). Then, a direct consequence of Theorem 8.1
is that skew products as in (8-1) have historical behavior almost everywhere.

Corollary 8.2.1 Let F be a skew product as in (8-1) satisfying (H0) and (N1).
Then, F has historical behavior for (P × λ)-a.e. point.

Proof Note that, by construction, F satisfies conditions (H0)–(H2). Let ν be
the measure in the assumption (N1). Now, by Theorem 8.1, we have that for
every y ∈ supp(ν) it holds

lim
n→∞

P

ξ ∈ Σ+
2 : 1

n

n−1∑
j=0

1Ii(γ)(f j
ξ (y)) < α


 < 1, i = 0, 1.
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Then, (F, id) satisfies the fiber weak arc-sine law (Definition 6.2). Since
(H0) also hold, by Corollary 6.8.1, we have that F has historical behavior
for (P × λ)-a.e. point, ending the proof of proposition. ■

Notice that, in general, the maps h0 and h1 generating the core
skew-product Fcore are not continuous, even if both fiber maps f0 and f1

of F are continuous (see Figure 8.2). Thus, the existence of an Fcore-stationary
measure might be a non-trivial problem. Nevertheless, we will introduce a
class of skew-products where we can easily verify (N1).

Let t > 1. Consider the following notations, I def= I0 ∪ I− ∪ I+ ∪ I1, where

I0
def=
[
0, 1

2t

)
, I− def=

[ 1
2t ,

1
2

)
, I+ def=

[1
2 , 1 − 1

2t

)
, and I1

def=
[
1 − 1

2t , 1
]
,

and J = I− ∪ I+. Note that this notation corresponds to (8-2) when c = 1/2.
Let h : J → J be a mesurable function such that

(i) h|I± is order preserving,

(ii) h(I−) ⊂ I+ and h(I+) ⊂ I−,

(iii) h has a periodic point in J .

Define the one-step skew product

Fh : Σ+
2 × I → Σ+

2 × I, Fh(ξ, y) def= (σ(ξ), fξ(y)), (8-5)

whose fiber maps fξ = fξ0 , ξ0 ∈ {0, 1}, are the form:

f0(y) def=



y

t
if y ∈ I0 ∪ I−,

h(y) if y ∈ I+,

ty − (t− 1) if y ∈ I1,

f1(y) def=


ty if y ∈ I0,

h(y) if y ∈ I−,

y + (t− 1)
t

if y ∈ I+ ∪ I1.

Figure 8.4 shows an example of piecewise linear fiber maps with a single
breakpoint of a skew-product Fh. This map has associated core skew product
Hcore = σ × h, where h is depicted in Figure 8.4. Observe that f1 = f−1

0

and thus, any point in the interval I+ is a periodic point. Consequently, Fh
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Figure 8.3: Skew product Hata-Yano. Figure 8.4: Core maps Hata-Yano.

satisfies (N1) on a set of positive measure. The following corollary claims that
a similar behaviour also holds under an extra assumption in the periodic point.

Proposition 8.3 Let h : J → J be a function satisfying conditions (i)–(iii).
Then, Fh satisfies (N1). Moreover, if in addition the periodic point in (iii) is
attracting, then Fh satisfies the fiber λ-weak arc-sine law.

Proof Note that by taking c = 1/2, the skew-product (8-5) is of the form (8-1)
with g0 = h|I+ and g1 = h|I− . Consider the core skew product Fcore as in (8-3)
associated with F . By (8-4), we have h0 = h1 = h. Hence, Hcore = σ × h. By
(iii), h has a periodic point p with period π(p). Then, we define the measure

ν
def= 1
π(p)

π(p)−1∑
j=0

δhj(p).

By (ii), the orbit of p meets I− and I+, and thus ν(I+)ν(I−) > 0. Since
the point p is periodic, the measure ν is h-invariant. Thus, the product
measure P × ν is Fcore-invariant. Hence, by Proposition A.19, ν is a discrete
Fcore-stationary measure. Therefore, F satisfies condition (N1).

On the other hand, if p is an attracting point of h, Theorem 8.1 holds
for any point in the basin of attraction of p. Indeed, observe that if y is close
enough to p, f j

ξ (y) is close to f j
ξ (p) for every j ≥ 0 and ξ ∈ Σ+. This follows

because while the points are on J , we use h and thus its iterates are closest.
When the iterates visit I0 or I1, then since in these regions f1 = f−1

0 , the
distance between the points is either contracted or cannot be expanded much.
Therefore, the points close to p follow the same itinerary and thus also satisfy
Theorem 8.1, concluding the proof of the proposition. ■

The difficulty arises in constructing examples of skew products as in (8-1),
that satisfy either (H0) or (H0b).
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8.2
Arc-sin Law in interval functions

We extend the ideas in Chapters 5 and 6 to obtain conditions for
interval functions to have historical behavior almost everywhere. Following
Remark 5.15, when the alphabet A is a singleton, the one-step skew products
F as in (5-1) can be interpreted as interval measurable functions f : I → I on
I = [0, 1] satisfying

f(0) = 0 and f(1) = 1. (8-6)
Our goal is to establish conditions under which these functions have historical
behavior almost everywhere.

Now, we present the arc-sine laws for interval measurable functions as
follows (see also the comparison with Definitions 6.2 and 6.4 in Remark 8.5):

Definition 8.4 Let f be a measurable function as in (8-6) and ψ : I → I

a non-negative, monotone increasing continuous function. Let m def= minψ
and M def= maxψ. The pair (f, ψ) satisfies

– the arc-sine law if, for every γ ∈ (m,M) and every α ∈ (0, 1), it
simultaneously holds

lim
n→∞

λ

y ∈ I : 1
n

n−1∑
j=0

1[γ,M ](ψ(f j(y))) < α


 = 2

π
arcsin

√
α,

lim
n→∞

λ

y ∈ I : 1
n

n−1∑
j=0

1[m,γ](ψ(f j(y))) < α


 = 2

π
arcsin

√
α.

(8-7)

– the weak arc-sine law if, for every γ ∈ (m,M) and every α ∈ (0, 1), it
simultaneously holds

lim sup
n→∞

λ

y ∈ I : 1
n

n−1∑
j=0

1[γ,M ](ψ(f j(y))) < α


 < 1,

lim sup
n→∞

λ

y ∈ I : 1
n

n−1∑
j=0

1[m,γ](ψ(f j(y))) < α


 < 1.

(8-8)

Remark 8.5 Definition 8.4 is stated with respect to the reference measure in
the probability space, similarly to Definition 6.4. However, since the alphabet A
has only one element, Definition 6.2 of fiber arc-sine laws becomes meaningless,
as the same function is always used.

Remark 8.6 A pair (f, ψ) satisfying the arc-sine law also satisfies the weak
arc-sine law. However, the converse does not hold in general. In [27], Thaler
and Zweimüller exhibit a distribution that satisfies the weak arc-sine law but
does not satisfy the arc-sine law.
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The following theorem relates the arc-sine laws and the historical
behavior.

Theorem 8.7 Let f be a measurable function as in (8-6) admitting a σ-finite
ergodic measure ν equivalent to λ. Let ψ : I → R be a non-constant, increasing,
non-negative continuous function such that (f, ψ) satisfies the weak arc-sine
law. Then, for λ-a.e. y ∈ I, it holds

lim inf
n→∞

1
n

n−1∑
j=0

ψ(f j(y)) = m and lim sup
n→∞

1
n

n−1∑
j=0

ψ
(
f j(y)

)
= M.

In particular, f has historical behavior for λ-a.e. point.

Proof The proof follows using the arguments from the proof of Theorem ??
and Proposition 6.6. We first use the weak arc-sine law to derive the upper
bound for the mean visitation of the neighborhoods of 0 and 1. Thereafter, we
use this result to conclude that f has historical behavior almost everywhere.

Given any γ ∈ (m,M), let I0(γ) def= (m, γ) and I1(γ) def= (γ,M). Given,
α ∈ (0, 1) define the set

Bi(α) def=

y ∈ I : lim sup
n→∞

1
n

n−1∑
j=0

1Ii(γ)(ψ(f j(y))) > α

 , i = 0, 1.

Note that, Bi(α) is and f -invariant with respect to f . As (f, ψ) satisfies the
weak arc-sine law, it holds

lim sup
n→∞

λ

y ∈ I : 1
n

n−1∑
j=0

1Ii(γ)(ψ(f j(y))) > α


 > 0 i = 0, 1

Now, by Lemma A.7,

λ (Bi(α)) ≥ lim sup
n→∞

λ

y ∈ I : 1
n

n−1∑
j=0

1Ii(γ)(ψ(f j(y))) > α


 > 0.

Since ν is equivalent to λ, we have that ν(Bi(α)) > 0. As ν is ergodic and Bi(α)
is f -invariant, it follows that ν(I\Bi(α)) = 0. Then, again from the equivalence
of λ and ν, we have that λ(I \ Bi(α)) = 0. This implies that λ(Bi(α)) = 1.
Taking α → 1, we obtain that

lim sup
n→∞

1
n

n−1∑
j=0

1Ii(γ)(ψ(f j(y))) = 1, for λ-a.e. y ∈ I, i = 0, 1. (8-9)

Now, the following lemma implies that f exhibits historical behavior
almost everywhere.
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Lemma 8.8 Let f be a measurable interval function under the assumption of
Theorem 8.7. Suppose that (8-9) is satisfied. Then

(i) lim sup
n→∞

1
n

n−1∑
j=0

ψ (f j(y)) = M for λ-a.e. y ∈ I, and

(ii) lim inf
n→∞

1
n

n−1∑
j=0

ψ (f j(y)) = m for λ-a.e. y ∈ I.

Proof To prove the first statement, as ψ is non-negative, for every γ ∈ (0, 1)
we have that

1I1(γ)(ψ(f j(y))) · γ ≤ ψ(f j(y)) for every y ∈ I, j ≥ 0.

Applying the upper limit we obtain

lim sup
n→∞

1
n

n−1∑
j=0

1I1(γ)(ψ(f j(y))) · γ ≤ lim sup
n→∞

1
n

n−1∑
j=0

ψ(f j(y)).

By (8-9) it holds that

γ ≤ lim sup
n→∞

1
n

n−1∑
j=0

ψ(f j(y)) for λ-a.e. y ∈ I.

Noting that

m ≤ lim sup
n→∞

1
n

n−1∑
j=0

ψ(f j(y)) ≤ M.

Since γ is arbitrary, taking γ → M it holds that

M = lim
γ→M

γ ≤ lim sup
n→∞

1
n

n−1∑
j=0

ψ(f j(y)) ≤ M,

proving the first statement. Now, we prove the second statement. The proof
is a variation of the proof for the first statement. First, observe that since
1 = 1I0(γ) + 1(γ,M ], by (8-9), we have

lim inf
n→∞

1
n

n−1∑
j=0

1(γ,M ](ψ(f j(y))) = 0 for Leb-a.e. x ∈ I. (8-10)

Consider the following inequality:

ψ(f j(y)) ≤ 1I0(γ)(ψ(f j(y))) · γ + 1(γ,M ](ψ(f j(y))) ·M for every y ∈ I.

Applying the lower limit, we obtain

lim inf
n→∞

1
n

n−1∑
j=0

ψ(f j(y)) ≤ lim inf
n→∞

1
n

n−1∑
j=0

1I0(γ)(ψ(f j(y))) · γ

+ lim inf
n→∞

1
n

n−1∑
j=0

1(γ,M ](ψ(f j(y))) ·M, (8-11)
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for every y ∈ I. Applying (8-10) to (8-11), we obtain

lim inf
n→∞

1
n

n−1∑
j=0

ψ(f j(y)) ≤ lim inf
n→∞

1
n

n−1∑
j=0

1I0(γ)(ψ(f j(y))) · γ,

for λ-a.e. y ∈ I. Since

lim inf
n→∞

1
n

n−1∑
j=0

1I0(γ)(ψ(f j(y))) · γ ≤ lim sup
n→∞

1
n

n−1∑
j=0

1I0(γ)(ψ(f j(y))) · γ,

we have that

lim inf
n→∞

1
n

n−1∑
j=0

ψ(f j(y)) ≤ lim sup
n→∞

1
n

n−1∑
j=0

1I0(γ)(ψ(f j(y))) · γ.

Now, by (8-9), it holds that

lim inf
n→∞

1
n

n−1∑
j=0

ψ(f j(y)) ≤ γ for λ-a.e. y ∈ I.

Noting that

m ≤ lim inf
n→∞

1
n

n−1∑
j=0

ψ(f j(y)) ≤ M.

Since γ is arbitrary, taking γ → m it holds that

m ≤ lim inf
n→∞

1
n

n−1∑
j=0

ψ(f j(y)) ≤ lim
γ→m

γ = m,

Therefore, it follows

lim inf
n→∞

1
n

n−1∑
j=0

ψ(f j(y)) = m, for λ-a.e. y ∈ I,

proving the second statement and therefore the lemma. ■

Lemma 8.8 implies that f has historical behavior for λ-a.e. point, proving
the theorem. ■

Remark 8.9 Equation (8-9) serves as the counterpart of condition (H3) and
is also derived using the weak arc-sine law for interval functions. Furthermore,
the conclusion of Theorem 8.7 holds if we replace as assumption (8-9) with the
weak arc-sine law.
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Figure 8.5: Manneville-Pomeu functions.

8.3
Historical behavior in generalized Manneville-Pomeu functions

We analyze interval functions similar to the Manneville-Pomeau functions.
Namely, we consider piecewise expanding interval functions f : I → I that fix
points at the boundaries 0 and 1. Manneville-Pomeau functions are defined as
follows (see Figure 8.5) for every p ≥ 1:

f(y) =

 y + 2pyp+1 if y ∈ [0, 1
2),

y − 2p(1 − y)p+1 if y ∈ [1
2 , 1].

Our goal is to analyze whether these functions satisfy the arc-sine law
and possess a σ-finite ergodic measure. When these conditions hold, using
Theorem 8.7, we can conclude that they have historical behavior almost
everywhere. In fact, Manneville-Pomeau functions belong to a more general
family introduced by Thaler in [26] as follows. Consider a measurable function
f : I → I as in (8-6), satisfying the following conditions: there exist c ∈ (0, 1)
and p > 1 such that

(T1) f is full branch: the restrictions

f− : (0, c) → (0, 1) and f+ : (c, 1) → (0, 1)

are increasing, onto, and C2, admit C2-extensions to the closed
intervals [0, c] and [c, 1],
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Figure 8.6: Thaler functions.

(T2) f is almost expanding: f ′(y) > 1 for every y ∈ (0, 1), f ′(0) = f ′(1) = 1,
and f is convex and concave in neighborhoods of 0 and 1, respectively,

(T3) f(y) − y = h(y) yp+1, for y ∈ (0, c) where

lim
y→0

h(ky)
h(y) = 1 for every k ≥ 0, and

(T4) There is a ∈ (0,∞) such that

lim
y→0

(1 − y) − f(1 − y)
ap(f(y) − y) = 1.

Remark 8.10 Conditions (T1) and (T2) are the initial requirements for
obtaining measures that are absolutely continuous with respect to the Lebesgue
measure. On the other hand, (T3) states that the function varies regularly at
zero with an index of p + 1. Similarly, (T4) implies that f varies regularly at
one, where the minimum variation is ap.

In what follows, we refer to functions satisfying (T1)–(T4) as Thaler
functions, see Figure 8.6. The following theorem has two parts. The first,
borrowed from Thaler [24, 25], asserts that every Thaler map has a σ-finite
ergodic measure equivalent to λ. The second part, borrowed from [26], claims
that (f, id) satisfies the weak arc-sine law.

Theorem 8.11 (Thaler) Let f be a Thaler function. Then, it holds

(i) f admits a σ-finite ergodic measure equivalent to λ.
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Figure 8.7: (a) Zero derivative; (b) Infinite derivative

(ii) For every α ∈ (0, 1), it simultaneously holds

lim
n→∞

λ

y ∈ I : 1
n

n−1∑
j=0

1[0,γ](f j(y)) < α


 = 2

π
arcsin

√
α,

lim
n→∞

λ

y ∈ I : 1
n

n−1∑
j=0

1[γ,1](f j(y)) < α


 = 2

π
arcsin

√
α.

A direct consequence of Theorem 8.11 is that every Thaler function have
historical behavior.

Corollary 8.11.1 Every Thaler function has historical behavior for λ-a.e.
point. In particular, Manneville-Pomeau functions have historical behavior for
λ-a.e. point.

Proof By Theorem 8.11 it follows that (f, id) satisfies the arc-sine law and
there is a σ-finite ergodic measure. By Remark 8.6, (f, id) also satisfies the weak
arc-sine law. Hence, by Theorem 8.7, the function f has historical behavior. ■

Remark 8.12 Coates et al. [7] consider interval functions f that are
similar to the Manneville-Pomeau functions, but may have zero or infinite
derivatives at the point of discontinuity, see Figure 8.7. They proved that
these functions admit a σ-finite ergodic measure equivalent to λ. Subsequently,
Coates and Luzzatto [6] demonstrated that these functions have historical
behavior almost everywhere. In this context, they prove (8-9) to get historical
behavior, see Remark 8.9.



A
Probability and ergodic theory

In this chapter, we introduce concepts of probability measures and
ergodic theory.

Definition A.1 A measurable space is a triplet (Ω,F , µ) where

– F is a σ-algebra, i.e., a collection of subsets of Ω which contains the
empty set and is closed under complements and countable unions. The
elements of F are called measurable.

– µ : F → [0,+∞) is a σ-additive function called measure.

If µ(Ω) = 1, then we say that µ is a probability measure on Ω.

Definition A.2 Let (Ω,F) and (Σ, C) be measurable spaces.

– The function ψ : Ω → Σ is said to be measurable if ψ−1(C) ⊂ F for
every C ⊂ C.

– A function ψ : Ω → R that is measurable is a random variable
of (Ω,F , µ).

Lemma A.3 (Fatou Lemma) Let (Ω,F , µ) be a probability space and
E1, E2, . . . be measurable sets in Ω. Then

µ(lim inf
n→∞

En) ≤ lim inf
n→∞

µ(En) ≤ lim sup
n→∞

µ(En) ≤ µ(lim inf
n→∞

En) (A-1)

Theorem A.4 (Monotone convergence) Let (Ω,F , µ) be a measurable
space and {ψn}n≥0 be a sequence of non-negative measurable functions. Suppose
that ψ1 ≤ ψ2 ≤ . . . and ψn → ψ pointwise, then:

lim
n→∞

ˆ
ψn dµ =

ˆ
ψ dµ.

Let (Ω1,F1, µ1) and (Ω2,F1, µ2) be two measurable spaces.

Theorem A.5 (Fubini) Let (Ω1,F1, µ1) and (Ω2,F1, µ2) be two measurable
spaces. Let (Ω,F , µ) = (Ω1 × Ω2, σ(F1 × F1), µ1 × µ2) and ψ : Ω → R be a
measurable function with ψ ≥ 0 and

´
|ψ| dµ < ∞. Then

ˆ
ψ dµ =

ˆ ˆ
ψ dµ1 dµ2 =

ˆ ˆ
ψ dµ2 dµ1.
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Now we present some properties of the random variables (see [20, 21] for
more information).

Definition A.6 Let ψ : Ω → R be a random variable of (Ω,F , µ). The
expectation and variance of ψ with respect to µ are defined, respectively, by

E(ψ) def=
ˆ
ψ dµ and Var(ψ) def= E(ψ2) − E(ψ)2. (A-2)

Lemma A.7 Let {ψn}n≥0 be a sequence of random variables. For every
constant, c > 0 it holds that

µ
({
ξ ∈ Ω: lim sup

n→∞
ψn(ξ) > c

})
≥ lim sup

n→∞
µ ({ξ ∈ Ω: ψn(ξ) > c})

Proof Denote by

A = {ξ ∈ Ω: lim sup
n→∞

ψn(ξ) > c} and B = lim sup
n→∞

{ξ ∈ Ω: ψn(ξ) > c},

we first prove the inclusion A ⊃ B. Given any ξ ∈ B, there are infinitely many
n ≥ 1 such that ψn(ξ) > c. Since there are infinitely many n, we can choose
n0 such that for every n ≥ n0, it holds that ψn(ξ) > c. Therefore, ξ ∈ A

and B ⊂ A. Now consider the set

Bn = {ξ ∈ Ω: ψn(ξ) > c} such that lim sup
n→∞

Bn = B

Note that by Lemma A.3 we have that

lim sup
n→∞

µ(Bn) ≤ µ(B) ≤ µ(A),

ending the proof of lemma. ■

Definition A.8 Let (Ω,F , µ) be a probability space and ψ : Ω → R a random
variable. Then the distribution function D : R → [0, 1] of ψ is defined
by D(a) def= µ(ψ ≤ a) with the following properties:

– For every a ≤ b we have that D(a) ≤ D(b),

– If an → a then D(an) → D(a)

– lim
a→−∞

D(a) = 0 and lim
a→∞

D(a) = 1.

Definition A.9 Let ψ, ϕ : Ω → R be random variables of (Ω,F , µ). We say
that they are independent if and only if, for every a, b ∈ R, it holds

µ({ψ < a} ∩ {ϕ < b}) = µ({ψ < a}) · µ({ϕ < b}). (A-3)
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Moreover, we say that ψ and ϕ are identically distributed if they have the
same distribution function. When ψ and ϕ are independent and identically
distributed, we denote them as i.i.d.

Definition A.10 Let (Ω,F , µ) be a probability space and consider a sequence
{ψn}n≥0 of random variables. Let F∞

m = σ(ψm, ψm+1, . . . ) be the σ-algebra
generated by ψm, ψm+1, . . . , and defined the tail algebra by

T ({ψn}n≥0) def=
∞⋂

m=1
F∞

m . (A-4)

Lemma A.11 Let {ψn}n≥0 be a sequence of random variables and φ : R → R
measurable function. For every constant b > 0, the sets

A(b) = {ξ ∈ Ω: lim sup
j→∞

1
n

n−1∑
j=0

φ(ψj(ξ)) < b}, and

B(b) = {ξ ∈ Ω: lim sup
j→∞

1
n

n−1∑
j=0

φ(ψj(ξ)) > b}

belong to the tail algebra.

Proof Consider n > m > 0, we have that

1
n

n−1∑
j=0

φ(ψj(ξ)) = 1
n

n−1∑
j=m

φ(ψj(ξ)) + 1
n

m−1∑
j=0

φ(ψj(ξ)).

Applying the limit to the inequality, we obtain that

lim sup
n→∞

1
n

n−1∑
j=0

φ(ψj(ξ)) = lim sup
n→∞

1
n

n−1∑
j=m

φ(ψj(ξ)). (A-5)

Therefore, the sets A(b) and B(b) are elements of the tail algebra T ({ψn}n≥0)
defined in (A.10). ■

The following theorem, borrowed from [15, §26, Theorem B],
demonstrates that if we have a random walk, the tail σ-algebra is trivial.
Further insights can be found in [2].

Theorem A.12 (Hewitt-Savage Zero-One Law) Let {ψn}n≥0 be a
sequence of random variables, and let S0, S1, S2, . . . be the sums

Sn = ψ0 + · · · + ψn, n ≥ 0.

If ψi are i.i.d., then the tail σ-algebra T ({Sn}n≥0) is trivial.

Now we present some concepts of Ergodic Theory (see [28] for more
information).
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Definition A.13 Let (Ω,F , µ) be a measure space, and T : Ω → Ω be a
measurable function. We say that µ is a T -invariant measure on Ω or that
T preserves µ if µ(T−1(A)) = µ(A) for every measurable set A ∈ F .

Definition A.14 The space (Ω,F , µ, T ) is called a measure-preserving
dynamical system if µ is T -invariant. Let ϕ : Ω → R be an absolutely integrable
function. We have

– A measurable subset A ⊂ Ω is said to be T -invariant if T−1(A) = A.

– A function ϕ is a T -invariant function if ϕ ◦ T = ϕ, for µ-almost every
point.

Definition A.15 Let (Ω,F) be a measurable space. A measure µ on Ω is
called σ-finite if there is a countable family of subsets A1, A2, . . . of Ω such
that µ(Ai) < ∞ for every i ∈ N and

Ω =
∞⋃

i=1
Ai.

Definition A.16 An T -invariant measure µ is called ergodic if µ(A) = 1 or
µ(A) = 0 for every T -invariant subset A ⊂ Ω. If the measure µ is σ-finite,
then it is ergodic if µ(A) = 0 or µ(Ω \ A) = 0.

The following theorem is the most important result of ergodic theory,
states that given an preserving dynamical system, the time average of an
observable along the orbit converge everwhere. This result is formulated as
follows.

Theorem A.17 (Birkhoff) Let (Ω,F , µ, T ) be a measure-preserving
dynamical system. Then, for every integrable function ϕ : Ω → R, the limit

ϕ̂(ξ) = lim
n→∞

1
n

n−1∑
j=0

ϕ(T j(ξ))

exists for µ-almost every ξ ∈ Ω. Moreover:

– ϕ̂ is a T -invariant function, and
´
ϕ̂ dµ =

´
ϕ dµ,

– if µ is ergodic, then

ϕ̂(ξ) = lim
n→∞

1
n

n−1∑
j=0

ϕ(T j(ξ)) =
ˆ
ϕ dµ, for µ-almost every ξ ∈ Ω.
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Let M = XN be a product space where X is some probability space,
endowed with the product measure µ = ρN andN a measurable space. Consider
the one-step skew product

F : M ×N → M ×N, F (x, v) def= (σ(x), fx(v)), (A-6)

where fx : N → N are measurable functions.

Definition A.18 Let F : M ×N → M ×N be a skew product as in (A-6). A
non-zero measure ν on N is called F -stationary if

ν(A) =
ˆ
ν(f−1

x (A)) dν, for every measurable set A ⊂ N.

Proposition A.19 Let F : M ×N → M ×N be a skew product as in (A-6).
A measure ν on N is F -stationary if, and only if, the product measure µ × ν

on M ×N is F -invariant.



B
Schwarzian derivative

In this chapter, we study some properties of the Schwarzian derivative.
Let f : I → I be a C3-diffeomorphism on the interval I = [0, 1]. The
Schwarzian derivative of any C3-diffeomorphism is defined by

Sf(y) def= f ′′′(y)
f ′′(y) − 3

2

(
f ′′(y)
f ′(y)

)2

.

We introduce the following notation for Sf :

– If Sf(y) < 0 for every y in a dense subset of I, we write Sf ≺ 0;

– If Sf(y) > 0 for every y in a dense subset of I, we write Sf ≻ 0; and

– If Sf(y) = 0 for every y in a dense subset of I, we write Sf ≡ 0.

The following results state some properties of the Schwarzian derivative (see [9]
for more information).

Proposition B.1 The Schwarzian derivative has the following properties:

(a) The sign of Sf is preserved under composition: given a
C3-diffeomorphism f : I → I with Sf ≺ 0 and a C3-diffeomorphism
g : I → I with Sg ≺ 0, then S(g ◦ f) ≺ 0;

(b) Sf ≺ 0 if and only if Sf−1 ≻ 0;

(c) Sf ≺ 0 if and only if ϕ(y) = 1√
|f ′(y)|

is strictly convex (in other words,
if and only if ϕ′(y) is increasing); and

(d) If Sf ≡ 0 if and only if f is a fractional linear map f(x) = ax+b
cx+d

with
ad− bc ̸= 0 and cx+ d ̸= 0.

Definition B.2 Given f : I → I a diffeomorphism, a fixed point y = f(y) ∈ I

is called hyperbolic attractor if |f ′(y)| < 1 and hyperbolic repeller if |f ′(y)| > 1.

Lemma B.3 Let f : I → I be a C3-diffeomorphism with Sf ≺ 0, then f it can
only have at most three fixed point. If f has three fixed points, then the middle
one must be hyperbolic repeller and the other two be hyperbolicc attractors.
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Proof First, we show that it cannot have four fixed points. Suppose there
are four points y1 < y2 < y3 < y4 that are fixed points. Then, by the Mean
Value Theorem on the intervals (y1, y2), (y2, y3), and (y3, y4), there exist points
in each interval with f ′(y) = 1. Therefore, the function φ(y) = 1√

|f ′(y)|
is

constant, which contradicts Sf ≺ 0 since the function φ is strictly convex.
Now, suppose there are three fixed points y1 < y2 < y3. Due to the

strict convexity of φ, there exists α ∈ (y1, y2) and β ∈ (y2, y3) such that
φ(α) = φ(β) = 1. Then, by convexity, we have

φ(y2) < 1 < φ(y1) and φ(y2) < 1 < φ(y3).

Thus, by the definition of φ and Definition B.2, we conclude that:

1 < |f ′(y2)| so y2 is strictly a repeller;

1 > |f ′(y1)| so y1 is strictly an attractor; and

1 > |f ′(y3)| so y3 is strictly an attractor,

ending the proof of lemma ■

Definition B.4 The cross-ratio of four distinct real numbers is defined by

ρ(y1, y2, y3, y4) def= (y3 − y1)(y4 − y2)
(y2 − y1)(y4 − y3)

. (B-1)

Note that ρ(y1, y2, y3, y4) > 1 when y1 < y2 < y3 < y4. We say that a map f

increases the cross-ratio if

ρ(f(y1), f(y2), f(y3), f(y4)) > ρ(y1, y2, y3, y4) when y1 < y2 < y3 < y4.

Lemma B.5 Consider f : I → I to be a C3-diffeomorphism. We have the
following:

(i) f increases the cross-ratio if and only if Sf ≺ 0;

(ii) f decreases the cross-ratio if and only if Sf ≻ 0; and

(iii) f preserves the cross-ratio if and only if Sf ≡ 0.

Proof We prove only item (i), the other items are similar, and their proofs
are hence omitted. Suppose Sf < 0 on a dense open set. Given the points
y1 < y2 < y3 < y4, after composing f with a fractional linear transformation,
we can assume that f has three fixed points y1, y2, y4. If Sf ≺ 0, then y1, y4 are
attractors, and y2 is a repeller by Lemma B.3. Therefore, since there cannot be
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a fixed point between y2 and y4, we conclude that f moves every intermediate
point to the right. Then y3 < f(y3), and we have

ρ(y1, y2, y3, y4) < ρ(y1, y2, f(y3), y4)

= ρ(f(y1), f(y2), f(y3), f(y4)).

We conclude that f increases the cross-ratio of the points y1, y2, f(y3), and y4.
On the other hand, if Sf is non-negative on a dense open set, we have

the following cases:

(i) Sf is strictly positive. Then, by item (b) of Proposition B.1, Sf−1 ≺ 0, so
f−1 increases the cross-ratio, and therefore, f decreases the cross-ratio;

(ii) Sf is identically zero. Then, by item (d) of Proposition B.1, f is a
fractional linear map, and it preserves the cross-ratio within the interval.

We conclude that f does not increase the cross-ratio. Therefore, f increases
the cross-ratio if and only if Sf ≺ 0. ■

Lemma B.6 If Sf ≺ 0 for a diffeomorphism f that preserves the orientation
of an interval J = [a, b], then f ′(a)f ′(b) < 1.

Proof First, suppose that f ′(a) = f ′(b). If f ′(a)f ′(b) ≥ 1, then, since Sf ≺ 0,
the function φ is convex, and we have φ(y) < 1 for y ∈ (a, b). Therefore,
f ′(y) > 1 for all y ∈ (a, b). However, this is impossible since if f ′(y) > 1, then
|f(b) − f(a)| > |b − a| and f : J → J . Thus, we conclude that f ′(a)f ′(b) < 1.
For the general case, let r : J → J be a reflection that interchanges a and b,
defined by r(y) = b − (y − a). Consider an auxiliary function g = r ◦ f ◦ r.
Then, Sg ≺ 0 with g′(a) = f ′(b) and g′(b) = f ′(a). Therefore, the composition
f ◦ g satisfies S(f ◦ g) ≺ 0 and the derivatives

(f ◦ g)′(a) = (f ◦ g)′(b) = f ′(a)f ′(b).

By the initial argument, we have f ′(a)f ′(b) < 1, ending the proof. ■
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